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Note on arithmetical functions and multiples
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Abstract. The existence of the logarithmic and number-theoreticdensitiesof some sets related to arithmeti-
cal functions is investigated. The Dirichlet convolution is used for the representation of these functions.

Keywords:arithmetical functions, Dirichlet convolution, multiples.

The set of arithmetical functionsA= {f :f :N → R} with the Dirichlet convolution

(f ∗ g)(n) =
∑

d|n
f (n)g

(n

d

)

is a ring of functions with the unity elemente(n), wheree(1) = 1 ande(n) = 0 if n >

1. We denote as usual byµ(n) the Möbius function, and byω(n),�(n) the numbers
of primes dividingn counted without and with multiplicity. We use the concepts of
additive and multiplicative functions in the usual number-theoretic sense.

An arbitrary arithmetical functionf can be viewed as a result of convolution of
some arithmetical functionw and the constant functionI (n) = 1:

f (n) = (w ∗ I)(n) =
∑

d|n
w(d), w(d) = (f ∗ µ)(d).

We use this representation as generic and writef (n) = f (n|w). It is our aim to inves-
tigate some relations between the conditions set onw and properties off (n|w).

It is easy to find out which functionsw(n) generate additive or multiplicative func-
tionsf (n|w).

THEOREM 1. The functionf (n|w) is multiplicative if and only ifw(n) is multi-
plicative.

The functionf (n|w) is additive if and only ifw(n) = 0 for all n with the condition
ω(n) �= 1.

Proof. The first statement can be found in most textbooks of number theory.
Let us prove the second statement. It is obvious, that the conditions onw imply

additivity of f (n|w). We prove that these conditions are necessary. It can be done
easily by induction over the values of�(n). Obviously,f (1) = w(1) = 0. If �(n) =
ω(n) = 2, thenn = pq, wherep,q are both primes. Iff (n|w) is additive, then

f (n|w) = f (p|w) + f (q|w) = w(p) + w(q) = w(p) + w(q) + w(pq),
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andw(n) = 0 follows. Let the statement be true for alln with the condition 2� ω(n) �
�(n) � m. Let for somen, ω(n) � 2,�(n) = m+1. Thenn = n′pa, wherep is prime
and(n′,p) = 1. We have

f (n|w) = f (n′) + f (pa) =
∑

d ′|n′
w(d ′) +

∑

b�a

w(pb) +
∑

δ|n′ ,δ>1
1�b�a

w(δpb).

The last sum is zero and for eachδpb, except for the largestδpb = n′pa, the condition
2� ω(δpb) � �(δpb) � m is satisfied. Hencew(δpb) = 0, andw(n) = w(n′pa) = 0.

The theorem is proved.

For an arbitrary subset of natural numbersA ⊂ N we denote the set of multiples

M(A) =
⋃

a∈A

{n ∈ N:n ≡ 0 (moda)}.

If w(d) ∈ {0,1} andAw = {d:w(d) = 1}, thenf (n|w) > 0 holds only ifn ∈M(Aw).

The value off (n|w), if f (n|w) > 0, can be interpreted as the „weight" of the multiple
n in the obvious sense.

We introduce two systems of densities. IfA ⊂ N andx > 1, let us denote

νx{A} = #(A ∩ (0, x])
	x
 , λx{A} = L−1

∑

n∈A
n�x

1
n
, L =

∑

n�x

1
n
.

We denote the lower and the upper limits ofνx{A},λx{A}, asx → ∞, by ν{A}, ν{A},
λ{A},λ{A}, respectively. It is well known that for all subsetsA ⊂ N

ν{A} � λ{A} � λ{A} � ν{A}.
If ν{A} = ν{A}, we denote this value byν{A} and say thatA possess the number-
theoretic density. Ifλ{A} = λ{A} = λ{A}, we say thatA has the logaritmic density.

We are going to prove some facts about the existence of densities for the sets
{n:f (n|w) � z}.

THEOREM 2. If the functionw(n) satisfies

∑

w(d)�=0

1
d

< ∞,

then for anyz the densityν{n:f (n|w) � z} exists.

Proof. Let d1 < d2 < . . . be the sequence of all numbers with the propertyw(d) �=
0. Let ε > 0 andN be some number such that

∑

j>N

1
dj

� ε.
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Define a functionw∗ taking w∗(d) = w(d), if d = dj with j � N, andw∗(d) = 0
otherwise. Then

ν{n:f (n|w) �= f (n|w∗)} �
∑

j>N

1
dj

� ε,

and

ν{f (n|w∗) � z} − ε � ν{f (n|w) � z} � ν{f (n|w) � z} � ν{f (n|w∗) � z} + ε.

Hence, it suffices to show the existence ofν{f (n|w∗) � z}.
Let D = {d1, d2, . . . , dN }. For eachnon-empty subsetD ⊂ D we denote bym(D)

the least common multiple of numbers inD. The numbersm(D1),m(D2) indexed
by different subsetsD1,D2 are not necessarily different. We avoid repetitions in the
following way: if a is some number in the sequence, find all numbersm(Dj) = a and
remove them, except the number indexed by∪Dj, i. e. leave the numbera = m(∪Dj).

Let M be the set of all remaining (different) numbers withM = m(D) the largest of
them.

If n ≡ m (modM) with somem ∈ M, thenf (n|w∗) = f (m|w∗); if m �∈ M, then
f (n|w∗) = 0. Hence for all valuesa the densitiesν{f (n|w∗) = a} exist, and this suf-
fices for the proof.

We turn now to the question of existenceλ{f (n|w) � z}. We use in our reasoning
the fact established by Erdös and Davenport: for any subsetA ⊂ N the set of multiples
M(A) has the logarithmic density (see [3]; [4] Th. 12, p.258; [5] Th. 02, p.5).

THEOREM 3. If the functionw(n) satisfies

∑

w(d)<0

1

d
< ∞,

then for anyz the densityλ{n:f (n|w) � z} exists.

Proof. As in the proof of the previous theorem we reduce the proof to the case of
functionw with the finite number ofd satisfyingw(d) < 0. Let D be the set of alld
such thatw(d) < 0. We repeat all the arguments of the proof of the previous theorem
leading from the setD to the set of different multiplesM andM = m(D).

Let w+(d) = max{w(d),0},w−(d) = min{w(d),0}. Then

f (n|w) = f (n|w−) + f (n|w+).

The functionf (n|w+) has a nice property: for everyu

M({n:f (n|w+) � u}) = {n:f (n|w+) � u}.
Hence we get from the Erdös-Davenport result thatλ{n:f (n|w+) � u} exists.

Note, that ifm ∈ M andn ≡ m (modM), then

f (n|w) = f (n|w−) + f (n|w+) = f (m|w−) + f (m|w+), f (m|w−) < 0. (1)
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If m �∈ M, then (1) holds withf (m|w−) = 0, too. This gives a chance to split the set
{n:f (n|w) � z} into disjunctive parts:

{n:f (n|w) � z} =
M−1⋃

m=0

{n:n ≡ m (modM),f (n|w+) � z − f (m|w−)}.

We conclude the proof using the following helpful fact: ifA ⊂ N andq,Q are some
natural numbers, then the logarithmic density

λ{n:n ≡ q (modQ),n ∈ M(A)}
exists. In the case(q,Q) = 1 it is proved in [5] (Lemma 1.17, p.61). To show, that it
holds as(q,Q) > 1, is easy. Observe now that withu = z−f (m|w−) in the definition
of the set

{n:n ≡ m (modM),f (n|w+) � u},
the conditionf (n|w+) � u can be replaced byn ∈ M({n:f (n|w+) � u}); hence this
set has the logarithmic density. The proof is complete.

Now we look for an example of function such that forAz = {n:f (n|w) � z} the
densityλ{Az} exists, butν{Az} − ν{Az} > 0 for eachz. In the construction of such
function we use the following result of Erdös ([2]):

ν{M([T ;2T ))} → 0, T → ∞, (2)

here[T ;2T ) means the set of natural numbers in this interval. The existence of densi-
ties in (2) can be proved using the combinatorial including-excluding principle, which
works because of finitness of[T ;2T ).

Let k � 1 be some natural number. We have, obviously, that

M([T ;2kT )) =
k−1⋃

j=0

M([2jT ;2j+1T )).

It follows then from (2) that

ν{M([T ;2kT ))} → 0, T → ∞. (3)

THEOREM 4. Let c > 0 and 0 < δ < 1 be some real numbers. There exists some
function f (n|w) such that for allz � c the densitiesλ{n:f (n|w) � z} exist, and
ν{n:f (n|w) � z} − ν{n:f (n|w) � z} � δ.

Proof. Let k be some natural number such that 1− 2−k � (1+ δ)/2 andε = (1−
δ)/2. According to (3) we can choose the sequence of natural numbersTm,Tm+1 >

2kTm with the conditions
∑

m

ν{M([Tm;2kTm))} < ε/2,

νx{M([Tm;2kTm)} < 2 · ν{M([Tm;2kTm)} asx � Tm+1.
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Let z1 = c, z1 < z2 < . . . be an arbitrary unbounded sequence. We define a function
w(d) takingw(d) = zm, if d ∈ [Tm;2kTm), andw(d) = 0, if d �∈ ∪m[Tm;2kTm). The
existence ofλ{f (n|w) � z} follows from the previous theorem.

For fixedz � c find somezm such thatz � zm. Obviously,

νx{f (n|w) � zm} � νx{f (n|w) � z} � νx{f (n|w) � c}.
We show thatν{n:f (n|w) � zm} � 1 − 2−k andν{n:f (n|w) � c} � ε. The second
inequality follows from

νTm
{n:f (n|w) � c} = νTm

{∪m−1
j=1 M([Tj,2kTj))} � 2

∑

j<m

ν{M([Tj;2kTj ))} < ε.

We obtain the first one using the bound

ν2kTm+j
{n:f (n|w) � zm} � ν2kTm+j

{M([Tm+j;2kTm+j ))}

= 2kTm+j − Tm+j

2kTm+j

= 1− 2−k.

This suffices for the proof.

We are now going to interpret the Behrend inequality for the set of multiples in the
context of arithmetical functions. LetA,B be arbitrary subsets of natural numbers.
The Behrend inequality is

1− λ{M(A ∪ B)} � (1− λ{M(A)}) · (1− λ{M(B)}), (4)

see [1]; [5] Th. 012, p.15.
Let now f (n|w1),f (n|w2) be two functions andwi(d) � 0 for all d. With some

fixed z1, z2 denote

A = {n:f (n|w1) � z1}, B = {n:f (n|w2) � z2}.
Because ofM(A) = A,M(B) = B,M(A ∪ B) = A ∪ B, the sets possess the

logaritmic densities. We have

1− λ{A} = λ{n:f (n|w1) < z1},
1− λ{B} = λ{n:f (n|w2) < z2},
1− λ{A ∪ B} = λ{n:f (n|w1) < z1,f (n|w2) < z2}.

Now from (4) we obtain

THEOREM 5. If w1(d) � 0,w2(d) � 0, then for allz1, z2

λ{f (n|w1) < z1} · λ{f (n|w2) < z2} � λ{f (n|w1) < z1,f (n|w2) < z2}. (5)
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Evidently,(5) can be rewritten for more than two functions.
For which additive or multiplicative functionsf1(n) = f (n|w1),f2(n|w2) inequal-

ity (5) holds? Having in mind Theorem 1, we derive quickly the sufficient condition:
it suffices that for any primep

0� fi(p) � fi(p
2) � . . . , i = 1,2, . . . ,

holds. If the sets{n:fi(n) < zi}, {n:f1(n) < z1,f2(n) < z2} possess the number-
theoretic densities they can be used in (5) instead of logaritmic ones. For example,
let P1,P2 be some arbitrary subsets of prime numbers; define the additive functions

fi(n) =
∑

p∈Pi ,p
α ||n

(α − 1), i = 1,2.

Then for allz1, z2

ν{n:f1(n) < z1} · ν{n:f2(n) < z1} � ν{n:f1(n) < z1,f2(n) < z2}.
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REZIUMĖ

V. Stakėnas. Pastaba apie aritmetines funkcijas ir kartotinius

Straipsnyje nagrin˙ejamas kartotini↪u aibi ↪u ir aritmetini↪u funkcij ↪u ryšys.↪Irodomi teiginiai apie aritmetini↪u
funkcij ↪u reikšmi↪u asimptotinius dažnius.

Raktiniai žodžiai:aritmetinės funkcijos, kartotiniai.


