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Note on arithmetical functions and multiples

Vilius STAKENAS (VU)
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Abstract. The existence of the logarithmic and number-theoretic densities of some sets related to arithmeti-
cal functions is investigated. The Dirichlet convolutionis used for the representation of these functions.
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The set of arithmetical functiond = { f: f: N — R} with the Dirichlet convolution

(f +)m = Fg(5)

din

is a ring of functions with the unity elemeaé:), wheree(1) =1 ande(n) =0 if n >
1. We denote as usual hy(n) the Mobius function, and by (n), 2 (n) the numbers
of primes dividingn counted without and with multiplicity. We use the concepts of
additive and multiplicative functions in the usual number-theoretic sense.

An arbitrary arithmetical functiory can be viewed as a result of convolution of
some arithmetical functiom and the constant functiohn) = 1:

fm)y=@=IDn) = Zw(d), w(d) = (f * u)(d).

din

We use this representation as generic and wf{t® = f (n|w). Itis our aim to inves-
tigate some relations between the conditions set @md properties of (n|w).

Itis easy to find out which functions(n) generate additive or multiplicative func-
tions f (n|w).

THEOREM 1. The functionf (rn|w) is multiplicative if and only ifw(n) is multi-
plicative.
The functionf (n|w) is additive if and only ifw(r) = O for all n with the condition

wn)#1.

Proof. The first statement can be found in most textbooks of number theory.

Let us prove the second statement. It is obvious, that the conditions iomply
additivity of f(n|w). We prove that these conditions are necessary. It can be done
easily by induction over the values 8f(n). Obviously, f (1) = w(1) =0. If Q(n) =
w(n) =2, thenn = pq, wherep, g are both primes. Iff (n|w) is additive, then

fmw) = f(plw) + f(glw) =w(p) +w(g) =w(p) +w(g) +w(pg),
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andw(n) = 0 follows. Let the statement be true for alvith the condition 2< w(n) <
Q(n) <m.Letforsomer, w(n) > 2,Q2(n) =m~+1 Thenn =n’'p?, wherep is prime
and(n’, p) = 1. We have

faw) =)+ fFpH =Y wd)+> wph+ Y wEph.
d'\n’ b<a Sln’ 5>1
1<bh<a
The last sum is zero and for eagp?, except for the largesip? = n’p?, the condition
2 < w@ph) < QEp?) < m is satisfied. Henca(8p?) =0, andw(n) = w(n’p®) = 0.
The theorem is proved.

For an arbitrary subset of natural numbdrs N we denote the set of multiples

M(4) = J{n e Nin =0 (moda)).

acA

If w(d) €{0,1}andA, = {d: w(d) =1}, then f(n|w) > 0 holds only ifn € M(A,).
The value off (n|w), if f(n|w) > 0, can be interpreted as the ,weight" of the multiple
n in the obvious sense.

We introduce two systems of densitiesAlic N andx > 1, let us denote

_#AN0,x]) vt 1
e R N R A D A

neA n <X
n<x

v {A}

We denote the lower and the upper limitsief A}, 1, {A}, asx — oo, by v{A}, V{A},
M A}, A{A}, respectively. Itis well known that for all subsetsc N

v{A} < A{A} < MA)} < T{A).

If v{A} =Vv{A}, we denote this value by{A} and say thatA possess the number-
theoretic density. IL{A} = A{A} = A{A}, we say thatA has the logaritmic density.
We are going to prove some facts about the existence of densities for the sets

{n: f(nlw) > z}.
THEOREM 2. If the functionw(n) satisfies

> 2w

w(d)#0

then for anyz the densitw{n: f (n|w) > z} exists.

Proof. Letd; < d» < ... be the sequence of all numbers with the property) #
0. Lete > 0 andN be some number such that

Z%ge.

j>N "/
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Define a functionw* taking w*(d) = w(d), if d =d; with j <N, andw*(d) =0
otherwise. Then

| —

- <€,
J

vin: f(nlw) # fnlw")) < Y
j>N

QU

and
v{f(nlw*) >z} —e <p{f(nlw) =z} <V{f(nlw) >z} <V{f(n|w*) >z} + €.

Hence, it suffices to show the existencevdf (n|w*) > z}.

LetD = {d1,d>, ...,dy}. For eachnon-empty subseb c D we denote byn(D)
the least common multiple of numbers In. The numbersn(D1), m(D>) indexed
by different subset®1, D, are not necessarily different. We avoid repetitions in the
following way: if a is some number in the sequence, find all numbe&i®;) = a and
remove them, except the number indexeddy;, i. e. leave the number=m(UD)).
Let M be the set of all remaining (different) numbers with= m (D) the largest of
them.

If n=m (modM) with somem € M, then f (n|w*) = f(m|w*); if m ¢ M, then
f(n|w*) =0. Hence for all valueg the densities{ f (n|w*) = a} exist, and this suf-
fices for the proof.

We turn now to the question of existent€f (n|w) > z}. We use in our reasoning
the fact established by Erdtés and Davenport: for any subseN the set of multiples
M(A) has the logarithmic density (see [3]; [4] Th. 12, p.258; [5] Th. 02, p.5).

THEOREM 3. If the functionw(n) satisfies

1
Z E < 00,
w(d)<0
then for anyz the density. {n: f (n|w) > z} exists.

Proof. As in the proof of the previous theorem we reduce the proof to the case of
functionw with the finite number ofl satisfyingw(d) < 0. Let D be the set of all/
such thatw(d) < 0. We repeat all the arguments of the proof of the previous theorem
leading from the seb to the set of different multipleBl and M = m (D).

Let wy (d) = maxw(d), 0}, w—_ (d) = min{w(d), 0}. Then

flw) = fnlw-) + f(njwy).
The functionf (n|w4.) has a nice property: for every
M((n: f(n|lwy) Zu}) = {n: f(n|wy) > u}.

Hence we get from the Erdés-Davenport result i@t f (n|wy) > u} exists.
Note, that ifm € M andn = m (mod M), then

fnw) = f(nlw-) + f(nlwy) = fmlw-) + f(mlwy),  flmlw-) <0. (1)
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If m ¢ M, then (1) holds withf m|w_) = 0, too. This gives a chance to split the set
{n: f (n|lw) > z} into disjunctive parts:
M-1
(n: flw) = 2} = [ J (min=m (modM), f (nlwy) >z — f(mlw_)}.
m=0
We conclude the proof using the following helpful factAfc N andg, O are some
natural numbers, then the logarithmic density

AMnin=qg (modQ),n € M(A)}

exists. In the caséy, Q) =1 itis proved in [5] (Lemma 1.17, p.61). To show, that it
holds asg, Q) > 1, is easy. Observe now that with= z — f (m|w_) in the definition
of the set

{n:n=m (modM), f(nlwy) > u},

the conditionf (n|w,) > u can be replaced by € M({n: f (n|lw,) > u}); hence this
set has the logarithmic density. The proof is complete.

Now we look for an example of function such that téy = {n: f(n|w) > z} the
densityA{A,} exists, buv{A,} — v{A,} > O for eachz. In the construction of such
function we use the following result of Erdés ([2]):

viIM(T;2T)H} -0, T — oo, (2)

here[T; 2T) means the set of natural numbers in this interval. The existence of densi-
ties in (2) can be proved using the combinatorial including-excluding principle, which
works because of finitness pif'; 27').

Letk > 1 be some natural number. We have, obviously, that

k—1
M(T; 2*T)) = U MI2/T; 271H1TY).
j=0
It follows then from (2) that
VIM(T: 2*T))} > 0, T — oo. (3)

THEOREM 4. Letc > 0and0 < § < 1 be some real numbers. There exists some
function f(n|w) such that for allz > ¢ the densities\{n: f (n|w) > z} exist, and
vi{n: f(n|lw) >z} — p{n: f(nlw) =z} > 4.

Proof. Let k be some natural number such that 2% > (14 8)/2 ande = (1 —
8)/2. According to (3) we can choose the sequence of natural nuntherg, 1 >
2%T,, with the conditions

D VM T 2T))) < €/2.

m

VA M([T; 2°T)} < 2- vIM([T; 2°T,)} @Sx = Thpa.
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Let z1 = ¢, 71 < 72 < ... be an arbitrary unbounded sequence. We define a function
w(d) taking w(d) =z, if d € [Ty,; 25T},), andw(d) =0, if d € U,,[Ty; 2¢T},). The
existence ok { f (n|w) > z} follows from the previous theorem.

For fixedz > ¢ find somez,,, such that < z,,. Obviously,

Vel f(n|w) 2z} S vl f(n|w) 2 2} < vl f(n|w) > c}.

We show tha®{n: f(n|w) > z,} > 1 — 2% andy{n: f(n|lw) > ¢} < e. The second
inequality follows from

vr,, {02 f (nlw) > ¢} = vr, (UIEMAT; 2 T))) <2 ) viMAT): 2°T))) <.

j<m
We obtain the first one using the bound

Vo, 01 falw) > 2} = voer, AM (T3 2T )

This suffices for the proof.

We are now going to interpret the Behrend inequality for the set of multiples in the
context of arithmetical functions. Let, B be arbitrary subsets of natural numbers.
The Behrend inequality is

1-A{MAUB)} = (1 = A{MAD - A= A{M(B)), 4)

see [1]; [5] Th. 012, p.15.
Let now f(n|w1), f (n|lw2) be two functions andv; (d) > 0 for all 4. With some
fixed z1, z2 denote

A={n:f(nlwy) 2 z1}, B={n:fnlw) >z}

Because ofM(A) = A, M(B) = B, M(A U B) = A U B, the sets possess the
logaritmic densities. We have

1-MA}=r{n: f(n|lwy) < z1},
1-A{B}=x{n: f(n|lw2) < z2},
1—2{AU B} =A{n: f(n|wr) < z1, f (n|w2) < z2}.

Now from (4) we obtain

THEOREM5. If wi(d) = 0, wa(d) > 0, then for allzq, z

Mf(nlwy) < z1} - M f (n|w2) < z2} < A{f(n|lw1) < z1, f(n|lw2) <z2}.  (5)
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Evidently, (5) can be rewritten for more than two functions.

For which additive or multiplicative functiong, (n) = f (n|w1), fo(n|wy) inequal-
ity (5) holds? Having in mind Theorem 1, we derive quickly the sufficient condition:
it suffices that for any prime

0 il < fipH<..., i=12,...,

holds. If the setdn: f;(n) < z;}, {n: fi(n) < z1, fo(n) < z2} possess the number-
theoretic densities they can be used in (5) instead of logaritmic ones. For example,
let P;, P, be some arbitrary subsets of prime numbers; define the additive functions

fim= > (-1, i=12

pEP;, p¥lln
Then for allzy, z2

vin: fi(n) <z} - vin: fa(n) < z1} <vin: fr(n) < z1, f2(n) < z2}.
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REZIUME

V. Stakénas. Pastaba apie aritmetinesfunkcijasir kartotinius
Straipsnyje nagriejamas kartotini aibiy ir aritmetiniy funkciju rySys.lrodomi teiginiai apie aritmetimi
funkcijy reikSmiy asimptotinius daznius.

Raktiniai ZodZiaiaritmetires funkcijos, kartotiniai.



