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Information measures for the stochastic Gompertz
growth model
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Abstract. In this paper we investigate the Shannon’s, Fisher’s and Tsallis’ information measures for the
Gompertz type stochastic process. We study the information measures of the stationary and non-stationary
Gompertz type densities associated to the three parameters: intrinsic growth rate, saturation measure and
noise amplitude. Finally we simulate the confidence interval for the value of all information measures. The
results are implemented in the symbolic algebra language MAPLE.
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Introduction

Noise driven dynamical systems is found in every branch of natural sciences. Stochas-
tic models with additive or multiplicative noise find numerous applications in forestry
[5], [6], biology [7], economy [1], [10]. The Shannon’s information entropy [8],
Fisher’s information measure [2], Tsalis’ information measure [9] and related quan-
tities [4] are an appropriate tool for the studyof non-stationary and stationary states
in stochastic processes. The rate of change in time of information measures considers
the phase space expansion of the stochastic process. It is observed that the Shannon
entropy can grow, decay or show up a mixed behavior.

In this paper we suppose that dynamics of stochastic process of tree diameter growth
is expressed in terms of the Gompertz type stochastic ordinary differential equation.
The Gompertz stochastic growth law with multiplicative noise we use in growth mod-
eling due to simple and attractive interpretation and admit close-form density solution.
The close-form probability density function of tree diameter size facilitates explicit
calculations of various information measures. We suppose that dynamics of tree diam-
eter growth is expressed in terms of the stochastic ordinary differential equation with
multiplicative noise in the following form [5]

dX(t) = rX(t) ln
K

X(t)
dt + σX(t)dW(t), t ∈ [0;T ], (1)

wheret is the age of a forest stand,r is the diameter intrinsic growth rate,K is the
diameter carrying capacity and forms a numerical upper bound on the diameter size,
andX(t) is the breast height diameter at the aget , σ is the intensity of noise,W(t) is
the standard Brownian motion (white noise). This diameter growth model, expressed
as the ordinary stochastic differential Eq. (1), holds the transition probability density
functionp(x, t), which project the distribution of tree diameter size subject to the aget .
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Methods and results

Each solution of the stochastic differential Eq. (1) describes one path of evolution of
process. The ensemble of realizations satisfies the corresponding Fokker–Plank equa-
tion

∂p(x, t)
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= −r

∂

∂x

(
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x
p(x, t)

)
+ σ 2

2
∂2

∂x2

(
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)
, (2)

wherep(x, t) is the transition probability density function of the processX(t).
The spreading of the transition probability density functionp(x, t) is best measured

by the Shannon information entropy, also named differential entropy

S(t) = −
∫

p(x, t) ln p(x, t)dt. (3)

The Shannon entropy is a well-known method for estimating the degree of disorder
in dynamical system. The original definition of Shannon entropy conveys uncertainty
and information measure. The less is the uncertainty of the system the large is the
information that we acquire.

The Fisher information measure ofp(x, t) is given by

I (t) =
∫

1

p(x, t)

( ∂

∂x
p(x, t)

)2
dt, (4)

which measures its sharpness or concentration. The Fisher information measure is al-
ways positive and reflects the localization characteristics of the probability distribution
more sensitively than the Shannon measure.

The Tsallis entropy, defined by

Sq(t) = 1

q − 1

(
1−

∫ (
p(x, t)

)q
dt

)
, (5)

is an extension of Shannon entropy with one-real-parameter ofq. In the limit of
q → 1, the Tsallis entropy (Eq. (5)) reduces to the Shannon entropy (Eq. (3)), since
(p(x, t))q−1 = e(q−1) lnp(x,t) ≈ 1+ (q − 1)p(x, t).

Using transformationY(t) = ln(X(t)) and Ito’s formula, we transform the non-
linear process (1) into the Ornstein-Uhlenbeck process [3]. So we can find the time
dependent solution of the Fokker–Planck equation (2). The solution of Eq. (2) has the
following form

p(x, t) = 1

σx
√

π(1− e−2rt )/r
e
− r(lnx−lnK+σ2/2r−e−rt lnx0)2

σ2(1−e−2rt ) . (6)

The exact steady state solutionp(x) of Eq. (2) has the following form

p(x) = K

σ

√
r

π
e− σ2

4r x−2e− r ln2 K
x

σ2 . (7)
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These probability density functions are properly normalized and their moments, de-
fined asmn(t) = M(Xn(t)) = ∫

xnp(x, t)dx (non-steady state),mn = M(Xn(t)) =∫
xnp(x)dx (steady state), contain valuable information about the stochastic dynam-

ics of tree diameter. The mathematical reasons for the usage of stochastic model we
motivate by the distinction between the stochastic logistic growth model and its deter-
ministic counterpart. For the stochastic Gompertz model of diameter growth we can
derive the first two moments, namely, the mean and variance of tree diameter size.
These equations showed that the mean diameter size of forest stands is extremely sen-
sitive with respect to the form and size of the coefficient of volatility (amplitude of
noise), and the deterministic Gomperz model overestimates the true mean diameter
size in the presence of stochastic perturbations [6].

The importance of a stable steady state, as a criteria for biological well-being, is
emphasized by many researches. Next we discuss a comparison of the non-stationary
transition probability density function (6) and the stationary probability density (7).
How far from each other these two probability densities are?

Now we illustrate these results by characterizing the underlying diameter dynamics
as a stochastic process with the multiplicative noise. For model estimation were used
observations of 1581 pines. The proposed information measures are applied to the
forest data taken from the pine trees growing in different areas of Lithuania. The data
source is based on the data provided by Lithuanian National Forest Inventory. The
estimation of the parametersr,K,σ for the Gompertz stochastic logistic growth law
(1) were calculated using the maximum likelihood procedure and the real data set from
the observations of 1581 pine trees [5]. The estimates of parameters are:r = 0.0647,
K = 33.6718,σ = 0.1350. For a given estimates of parameters and the stationary
probability density (7), the information measures (3)–(5) take values:S = 3.814597,
F = 0.012550,S2 = 0.973379.

As we can see Fig. 1, the Tsallis entropy decreases monotonically as powerq in-
creases and reaches the Shannon entropy (q → 1). For a given estimates of parame-
ters and the transition probability density (6), information measures (3)–(5) are shown
in Fig. 2.

Fig. 1. Plot of the Tsallis entropy vs. powerq .
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Fig. 2. Plot of differential information measures vs. timet .

A stable steady state in ecology is important for an understanding of ecosystems as
dynamical complex processes. A departure from steady state indicates a negative un-
healthy situation of ecosystem. The importance of stable steady state, as a criteria for
biological well-being, emphasize many researches. This leads to the idea of measuring
departure from steady state. In this paper the approach of obtaining a departure from
steady state consists in defining the confidence intervals of steady state information
measures using Monte Carlo simulations. The distancesS −S(t), I − I (t),S2 −S2(t)

describe the loss of information when the non-steady state probability densityp(x, t)

is used to approximate the steady state probability densityp(x), and measure the dif-
ference between the tree diameter maximum entropy and its entropy at given aget .
While smaller these distances clearly indicate less information is lost by the non-
steady state probability density function, there is no absolute scale against which to
judge the significance of distancesS −S(t), I − I (t),S2 −S2(t). So it is worth noting
that significance of these distances might be redefined through one-sided confidence
intervals, at first providing lower (upper) bound for the steady state Shannon, Tsallis,
Kullback (Fisher) information measure, and then by comparing values of the steady
state lower (upper) bound and the non-steady state curve.

We carried out a small simulation study to compare the non-steady state time evo-
lution of information measures with its steady state confidence interval. We repeat-
edly (s = 1000) simulated 1581 points distributed by probability density function (7)
(r = 0.0647,K = 33.6718,σ = 0.1350). Then repeatedly the parametersr,K,σ were
estimated by maximum likelihood procedure and the information measures (3)–(5)
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Fig. 3. Plot of information measures vs. timet and corresponding steady state values.

were calculated. The 95% lower bound for the steady state Shannon and Tsallis en-
tropy are 3.8091, 0.9635 and upper bound for the steady state Fisher information
measure is 0.0202. The hitting times of time dependent information measures to its
stationary confidence bound values are presented in Fig. 3. The Shannon differential
entropyS(t) hits a 95% lower bound at 88 year, the Fisher informationI (t) hits a
95% upper bound at 93 year, and the Tsallis entropyS2(t) hits a 95% lower bound
at 85 year. All aforementional information measures are closely related. The compari-
son of the results of optimal harvesting periods for all used information measures are
presented in Fig. 3. As we see in Fig. 3, the optimal harvesting defined by Shannon’s
entropy has minimal periods and optimal harvesting defined by Fisher’s information
has maximal periods. Most forest stands reach their economically optimal harvesting
period prior to our defined biologically optimal harvesting period.

Conclusions

In this paper we studied the steady state and non-steady state properties of a tree di-
ameter growth model in the presence of multiplicative noise. We suggested a new
approach in investigating the dynamics of diameter growth data, on the basis of the
information measures (Shannon, Fisher, Tsallis). This viewpoint is completely novel
in forest research projects. To our knowledge no studies had been performed on diam-
eter data using such nonlinear methodologies. Therefore, the results presented in this
paper encourage the use of these techniques for analyzing the optimal rotation period
of forest stands. Other growth models such as Verhulst, Mitscherlich, von Bertalanffy,
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Richards, and much more, are equally plausible, but they lead to a numerical solution
of transition probability density.
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REZIUMĖ

P. Rupšys. Stochastinio Gompertco tipo augimo modelio informaciniai matai

Darbe augimo procesui modeliuoti yra naudojamas stochastinis Gompertco tipo modelis. Augimo proceso
dinamikos charakterizavimui panaudojami Šenono, Fišerio, Tsalio informaciniai matai. Rezultatai ilius-
truojami panaudojant Lietuvos pušies medyn↪u stebėjimo duomenis.

Raktiniai žodžiai: stochastinis procesas, Gompertcas, Fišeris, Tsalis, imitavimas.


