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On the Green’s formula for a Stokes type problem
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Abstract. A time-periodic Stokes problem is studied in the domain with cylindrical outlets to infinity.
Using the Fourier series the problemis reduced to a sequence of elliptic problem. For each of these elliptic
boundary value problems a generalized Green’s formula is constructed. The analogous Green’s formula
for the steady Stokes problem was obtained in [1].
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1. Formulation of the problem
Let © c R3 be a domain with cylindrical outlets to infinity, i.e., outside the Byl =
{x eR3: |x| < R} the domair2 coincides with a system of semi-infinite cylinders

H’ of a constant cross section . Let H’ NTA =9, j # k and let the boundary<
be smooth. We consider iR the time- perlodlc Stokes problem

V; —VvAV+Vp=Ff (x,1)eQx(0,2n), (1)
—-V.v=0, (x,t)eQx(0,2r), (2)
v=0, (x,t)€dR x (0,2r), 3)
V(x,0)=v(x,2r), xeQ. (4)

We assume that the external fofce (f1, f2, f3)! is 27 -time-periodic function. Prob-
lem (1)—(4) could be decomposed into a sequence of elliptic problems. Indeed, we can
look for the solution to problem (1)—(4) in the form

o0

1 .
V(x, 1) = 2—0 + - {Vqr(x) coskt + Vg (x) sinkt}, (5)
=1

=~

WK

o 1 .
plx.t) = % + = 3 (pe(x) COSkT + pyg(x) Sinkr} (6)

k
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Inserting series (5), (6) into equations and boundary conditions we get for coefficients
Veky Vsky Peky Psk S€ries of the systems of elliptic problems

kv _VAVck+vpck:fck, x €L,
—kV i _VAVsk+vpxk:ka, x €L,

—V~Vck=0, —V~VS/(=0, x € Q, (7)
VckZO, kaZO, x € 092.
Heref.o/(2r), fox /7, T/, k =0, 2, ..., are Fourier coefficients of the functidr=

f(x,1).

In this paper we derive so-called generalized Green’s formula for problem (7). The
analogous Green’s formula for the steady Stokes problem was obtained in [1]. The
obtained below results are important for the construction of correct asymptotic con-
ditions at infinity which describe real time-periodic physical processes (for example
bloodstream).

2. Theasymptotics of the solution to problem (7)

Let x/ = (x{,xé,xé) be the local coordinate system related to the cylinﬂérsuch

that the aXiScé is directed along cylinder axis. We consider problem (7) in a weighted
Sobolev spaca/é (2) which is a closure o€3° (Q) (a class of infinitely differentiable

functions with compact supports &) with respect to the norm

|

u; Whe)|® = Z/Qpﬁ(x)|Dgu(x)|2dx,

N

where pg is a smooth positive function oft such thatog (x) = exp(ﬂx@ on Hi \

Bgr, j=1,...,J.If B >0, elements of this space exponentially vanislngatends to
infinity, and they may exponentially grow, <0 .

Consider problem (7) in the cyIinde‘tIi. Using the methods of the book [2] and
arguing in the same way as in [1] we obtain four special solutions of the homogeneous
problem (7):

W?=(0.0.0,1,0,0,0,0/, u/l=(0.0.¢{.x.0.0.-y/.0".  (8)
u/)=(0,0,0,0,0001, wi=(0.0y{.000¢f x). (9)
where the pair of functionsp,{, w,f) is the unique solution of the problem
kil +vagl =1, x/'=(f,x)) ew’,

ki —vAYp =0, 1/ ew/, (10)

According to Theorem 3.1.4 in [2] the sum of linear combinations of these solutions
gives the main term (up to an exponentially vanishing term) of the asymptotic decom-
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position of the "growing” at infinity solution. Let;(x) be a smooth cut-off function
such that supfx;) € I, andy;(x) =1if x{ > Lfor j=1,...,J.

THEOREM 1. Let B> 0. If U = (Vek, Pek, Vsks Psk) € DQﬁW(Q) isthe solution to
problem (7) with the right-hand side f; = (fex, o) € Wy 1(2)®, then

7
o 0 oo
Ug (x) = Z Xj(x) {agkuik +ajuly + blul + blul } + Uk, (11)
=1

where O € DLW (R), al}. @ b)) b, € C. Here DLW (@) = W ()8 x Wh(@)2.

3. Generalized Green’s formula

Let Ux = (Vek, Peks Vsks Psk)s Uk = (Vek, Pk, Vks Psr) € C(Q). Integrating twice
by parts inQ2 one gets the standard Green’s formula (see [3])

(—VAVe + Vper + kVs, Ver)a + (=V - Ver, Pe)a
+(=VAVs + Vpgi —kVer, Vi) o + (=V - Vg, Py
F+ ek, NPk —vonVer)an + (Vsk, NPgx —vonVsk) s
—(Vek, =VAV e + VP —kVsi)a — (Peks =V - Ver)a
—(Vsk, —VAVy + V Py +kVei)a — (psk, —V - Vi)
—(Npek — vonVek, Ver)ao — (Npsk — vonVsk, Vsi)an =0,

(12)

here(,)q stands for a scalar product itp(2). Denoting byg (ug, Uy) the left-hand
side of the above formula we get

gu,U)=¢qU,u)=0

foranyu e D, W(R) andU e D' ;W (). Let S be an operator of problem (7) asd
be an operator of the problem

—kVsk — VAV +VPy=Fy, x€,
kVex —vAVsg + V Psj = Fyg, X e,
-V V=0, =V -Vk=0, x €92,
Vck=0, VSkZO, x € 0Q2.

(13)

It is clear thatS* is an adjoint operator t§ with respect to the Green’s formula (12).
Note thatS is not self-adjoint operator. Homogeneous problem (13) in the cylinder

IT), has four special solutions

UJ/=(0.0.0.1,0.0.0.0/, Ul =(0.0.¢/.x}.0.0.9/.0/,  (14)

U/?=(0,0,0,0,0,0,0,1)', U/ =(0,0,—y/,0,0,0,¢/,xJ),  (15)

where functionSp,{ and w,{ are defined by formula (10). We denote DQEﬁW(Q)
the subset of functions; € D' ;W (Q) having expansion (11) and i, , W (Q)* the
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subset ofDﬂﬁW(Q) consisting of functions having an expansions

J
ooy
Ue=) X {Aikugk +ALU + BLUL + BL U } + Us, (16)
=1
where UfZ’k,h € {0,1}, ¢ € {c,s}, are defined by (14) and (15)); € D%W(Q),

A;k,Aﬁk,ng,Bjk eC.
Since suppy ;) Nsuppx;) =¥, j #1, we have

Im

ih
qOul e iU ) =0, h,me{0,1}), o,00¢€{c,s}.

Using the fact that functions (8), (9) and (14), (15) are exact solutions to homogeneous
problems (7) and (13), respectively, we get, after cumbersome computation, that

gl Ul ) =0, h=0,1, o.00¢€(c.s).

Inserting representations (11) and (16) iptay, Ux) we get that a number of terms in
q (ug, Up) vanishes and, finally, we find

J
o 0 1 o 0 1
q(Ug, Up) = Z {agk By q(xjules XU +aly Byea (xjule. x;Ugp)
j=1
i i Jj0 il j Rl Jj0 Jjl
+ g B q (Ui XUz + agpe Bl 4 (U x5 Ysi)
J %7 Jjl j0 J %7 Jjl Jj0
b Ack (X Yers XiVUer) + g A d (X Ui X Vi)
J i il Jj0 J o3 il Jjo
+ by Ack 4O Y XjYer) + D Asie a (XU X Vi )} :
Let us calculate the term(xjug,?, Xjug,}). We note, firstly, that the cut-off func-
tion x; restricts all considerations to the cylindr, , secondly, thaS(Xjuf}hk) and

S*(Xjuf;f’k) have compact supports. Applying the Green'’s formula (12) in the domain

Qr={xeQ: ifxe Hi thenxé <L, j=1,...,J}we getan additional integral over
the cross—sectioa)f. Letn = (0,0, 1)’ be the outward normal t6Q2; on w’/ and
d3=20\ axé. Taking into account (8), (9) and (14), (15) we get
i0 i1 i0 i1 i1 i0 i1 i1
q(xjUles xjULD = (VL NP = vaV]D) o) + (V] NPY = 13V i
i0 i0 \,j1 i0 i0 \,j1
— (plg — vVl Vi) s — (Nple —voaviE VD),
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The rest terms in the Green’s formula could be computed in the same way. Finally, we
arrive at

J . P P
Q(Uk,uk)ZZ{(bngik + bl Ay —al, Bl — ka >((pk’1)w’

j=1

+ (Bl + bl Al — bl A% — ) BL) W 1, .

Now we define operatorsr?, n2, ;. 7}: D, W(Q) — C’ (operatorsn?, )

nk wi D, W(Q)* — C are defined in the same way) as follows:

2 I\t 0
Laz),

2 AN
b seendy ),

0
Cu—(a u—(a
1
C

rlu= @ b2, b)), wlu=@®i 3, ... b)Y,

where the numbera{, ag', bg, b{ are the coefficients in expansion (11) of the function
u e D ,W(Q) (in expansion (16) fol € DY, , W ()%). Let

j Jadl i P g’ o nd o
Ckz/j(pkdxj, dkz—/jwkdxj, x! = (x1,x3),
[OF w?

Cy =diagict, c2,....cl}, Dy =diagd}, d?, ..., dJ)

be theJ x J matrices. Taking into account previous results and notations we get the
following formula

and

q(Ux, Up) = (Certug — Dirlug, 7200 s + (Comlug + Dirtug, 7000
— (U, Ce U+ Dy U s — (Qu, et P U — Dy 2 Ug) 5, (17)

where( , ); stands for a scalar product @ . We call (17) thegeneralized Green's
formula.
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REZIUME

M. Skujus. Apie Gryno formule vienam Stokso tipo uzdaviniui

Laiko atzvilgiu periodinis Stokso uzdavinys begalirilindry sistemoje Fug eiluciy pagalba suvedamas

i elipsiniy uzdaviniy sela. Siems Stokso tipo krastiniams uzdaviniamesiama apibendrintoji Gryno for-
mulé.

Raktiniai ZodZiai: begalini cilindry sistema, laiko atzvilgiu periodinis Stokso uzdavinys, apibendrintoji
Gryno formuk.



