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On the Green’s formula for a Stokes type problem

Mindaugas SKUJUS (MII)*

e-mail: mindaugas.skujus@mif.vu.lt

Abstract. A time-periodic Stokes problem is studied in the domain with cylindrical outlets to infinity.
Using the Fourier series the problem is reduced to a sequence of elliptic problem. For each of these elliptic
boundary value problems a generalized Green’s formula is constructed. The analogous Green’s formula
for the steady Stokes problem was obtained in [1].
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1. Formulation of the problem

Let � ⊂ R
3 be a domain with cylindrical outlets to infinity, i.e., outside the ballBR ={

x ∈ R
3: |x| � R

}
the domain� coincides with a system ofJ semi-infinite cylinders

�
j
+ of a constant cross sectionωj . Let �j

+ ∩ �k+ = ∅, j �= k and let the boundary∂�

be smooth. We consider in� the time-periodic Stokes problem

vt − ν�v + ∇p = f, (x, t) ∈ � × (0,2π), (1)

−∇ · v = 0, (x, t) ∈ � × (0,2π), (2)

v = 0, (x, t) ∈ ∂� × (0,2π), (3)

v(x,0) = v(x,2π), x ∈ �. (4)

We assume that the external forcef = (f1,f2,f3)
t is 2π -time-periodic function. Prob-

lem (1)–(4) could be decomposed into a sequence of elliptic problems. Indeed, we can
look for the solution to problem (1)–(4) in the form

v(x, t) = vc0

2π
+ 1

π

∞∑
k=1

{vck(x)coskt + vsk(x)sinkt} , (5)

p(x, t) = pc0

2π
+ 1

π

∞∑
k=1

{pck(x)coskt + psk(x)sinkt} . (6)
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Inserting series (5), (6) into equations and boundary conditions we get for coefficients
vck, vsk, pck, psk series of the systems of elliptic problems




kvsk − ν�vck + ∇pck = fck, x ∈ �,

−kvck − ν�vsk + ∇psk = fsk, x ∈ �,

−∇ · vck = 0, −∇ · vsk = 0, x ∈ �,

vck = 0, vsk = 0, x ∈ ∂�.

(7)

Herefc0/(2π), fck/π, fsk/π,k = 0,2, . . . , are Fourier coefficients of the functionf =
f(x, t).

In this paper we derive so-called generalized Green’s formula for problem (7). The
analogous Green’s formula for the steady Stokes problem was obtained in [1]. The
obtained below results are important for the construction of correct asymptotic con-
ditions at infinity which describe real time-periodic physical processes (for example
bloodstream).

2. The asymptotics of the solution to problem (7)

Let xj = (x
j
1 , x

j
2 , x

j
3) be the local coordinate system related to the cylinder�

j
+ such

that the axisxj
3 is directed along cylinder axis. We consider problem (7) in a weighted

Sobolev spaceWl
β(�) which is a closure ofC∞

0 (�) (a class of infinitely differentiable

functions with compact supports in�) with respect to the norm

∥∥u;Wl
β(�)

∥∥2 =
∑
|α|�l

∫
�

ρβ(x)
∣∣Dα

x u(x)
∣∣2 dx,

whereρβ is a smooth positive function on� such thatρβ(x) = exp(βx
j

3) on �
j
+ \

BR, j = 1, . . . , J . If β > 0, elements of this space exponentially vanish asx
j

3 tends to
infinity, and they may exponentially grow, ifβ < 0 .

Consider problem (7) in the cylinder�j
+. Using the methods of the book [2] and

arguing in the same way as in [1] we obtain four special solutions of the homogeneous
problem (7):

uj0
ck

= (0,0,0,1,0,0,0,0)t , uj1
ck

= (0,0,ϕ
j
k
,x

j
3 ,0,0,−ψ

j
k
,0)t , (8)

uj0
sk = (0,0,0,0,0,0,0,1)t , uj1

sk = (0,0,ψ
j
k ,0,0,0,ϕ

j
k ,x

j
3)t , (9)

where the pair of functions(ϕj
k ,ψ

j
k ) is the unique solution of the problem




kψ
j
k + ν�ϕ

j
k = 1, xj ′ = (x

j
1, x

j
2) ∈ ωj,

kϕ
j
k − ν�ψ

j
k = 0, xj ′ ∈ ωj,

ϕ
j
k = ψ

j
k = 0, xj ′ ∈ ∂ωj .

(10)

According to Theorem 3.1.4 in [2] the sum of linear combinations of these solutions
gives the main term (up to an exponentially vanishing term) of the asymptotic decom-
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position of the "growing" at infinity solution. Letχj(x) be a smooth cut-off function

such that supp(χj ) ⊆ �
j
+ andχj (x) = 1 if x

j
3 > L for j = 1, . . . , J .

THEOREM 1. Let β > 0. If uk = (vck,pck,vsk,psk) ∈ Dl
−βW(�) is the solution to

problem (7) with the right-hand side fk = (fck, fsk) ∈ Wl−1
β (�)6, then

uk(x) =
J∑

j=1

χj(x)
{
a

j
ckuj0

ck + a
j
skuj0

sk + b
j
ckuj1

ck + b
j
skuj0

sk

}
+ ũk, (11)

where ũk ∈Dl
βW(�), a

j
ck,a

j
sk, b

j
ck,b

j
sk ∈ C. Here Dl

βW(�) = Wl+1
β (�)6 × Wl

β(�)2.

3. Generalized Green’s formula

Let uk = (vck,pck,vsk,psk),Uk = (Vck,Pck,Vsk,Psk) ∈ C∞
0 (�). Integrating twice

by parts in� one gets the standard Green’s formula (see [3])

(−ν�vck + ∇pck + kvsk,Vck)� + (−∇ · vck,Pck)�
+(−ν�vsk + ∇psk − kvck,Vsk)� + (−∇ · vsk,Psk)�
+(vck,nPck − ν∂nVck)∂� + (vsk,nPsk − ν∂nVsk)∂�

−(vck,−ν�Vck + ∇Pck − kVsk)� − (pck,−∇ · Vck)�
−(vsk,−ν�Vsk + ∇Psk + kVck)� − (psk,−∇ · Vsk)�
−(npck − ν∂nvck,Vck)∂� − (npsk − ν∂nvsk,Vsk)∂� = 0,

(12)

here( , )� stands for a scalar product inL2(�). Denoting byq(uk ,Uk) the left–hand
side of the above formula we get

q(u,U) = q(U,u) = 0

for anyu ∈Dl
βW(�) andU ∈Dl−βW(�). Let S be an operator of problem (7) andS∗

be an operator of the problem



−kVsk − ν�Vck + ∇Pck = Fck, x ∈ �,

kVck − ν�Vsk + ∇Psk = Fsk, x ∈ �,

−∇ · Vck = 0, −∇ · Vs k = 0, x ∈ �,

Vck = 0, Vsk = 0, x ∈ ∂�.

(13)

It is clear thatS∗ is an adjoint operator toS with respect to the Green’s formula (12).
Note thatS is not self-adjoint operator. Homogeneous problem (13) in the cylinder
�

j
+ has four special solutions

Uj0
ck = (0,0,0,1,0,0,0,0)t , Uj1

ck = (0,0,ϕ
j
k ,x

j
3,0,0,ψ

j
k ,0)t , (14)

Uj0
sk = (0,0,0,0,0,0,0,1)t , Uj1

sk = (0,0,−ψ
j
k ,0,0,0,ϕ

j
k ,x

j
3)t , (15)

where functionsϕj
k

andψ
j
k

are defined by formula (10). We denote byD
l±βW(�)

the subset of functionsuk ∈ Dl
−βW(�) having expansion (11) and byDl

±βW(�)∗ the
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subset ofDl
−βW(�) consisting of functions having an expansions

Uk =
J∑

j=1

χj

{
A

j
ckUj0

ck + A
j
skUj0

sk + B
j
ckUj1

ck + B
j
skUj1

sk

}
+ Ũk, (16)

where Ujh
�,k ,h ∈ {0,1} ,� ∈ {c, s}, are defined by (14) and (15),̃Uk ∈ Dl

βW(�),

A
j
ck,A

j
sk,B

j
ck,B

j
sk ∈ C.

Since supp(χj ) ∩ supp(χl) = ∅, j �= l, we have

q(χj ujh
�,k,χlUlm

��,k ) = 0, h,m ∈ {0,1} , �,�� ∈ {c, s} .

Using the fact that functions (8), (9) and (14), (15) are exact solutions to homogeneous
problems (7) and (13), respectively, we get, after cumbersome computation, that

q(χjujh
�,k ,χj Ujh

��,k ) = 0, h = 0,1, �,�� ∈ {c, s} .

Inserting representations (11) and (16) intoq(uk,Uk) we get that a number of terms in
q(uk,Uk) vanishes and, finally, we find

q(uk,Uk) =
J∑

j=1

{
a

j
ck B

j

ck q(χj uj0
ck ,χj Uj1

ck ) + a
j
ck B

j

sk q(χj uj0
ck ,χj Uj1

sk )

+ a
j
sk B

j

ck q(χj uj0
sk ,χj Uj1

ck ) + a
j
sk B

j

sk q(χjuj0
sk ,χj Uj1

sk )

+ b
j
ck A

j

ck q(χjuj1
ck ,χj Uj0

ck ) + b
j
ck A

j

sk q(χj uj1
ck ,χj Uj0

sk )

+ b
j
sk A

j

ck q(χj uj1
sk ,χj Uj0

ck ) + b
j
sk A

j

sk q(χj uj1
sk ,χj Uj0

sk )
}

.

Let us calculate the termq(χj uj0
ck ,χj Uj1

ck ). We note, firstly, that the cut-off func-

tion χj restricts all considerations to the cylinder�
j
+, secondly, thatS(χj ujh

�,k ) and

S∗(χjujh
�,k ) have compact supports. Applying the Green’s formula (12) in the domain

�L = {x ∈ �: if x ∈ �
j
+ thenxj

3 < L, j = 1, . . . , J } we get an additional integral over
the cross-sectionωj . Let n = (0,0,1)t be the outward normal to∂�L on ωj and
∂3 = ∂ \ ∂x

j
3. Taking into account (8), (9) and (14), (15) we get

q(χj uj0
ck ,χj Uj1

ck ) = (vj0
ck ,nP

j1
ck − ν∂3Vj1

ck )ωj + (vj0
sk ,nP

j1
sk − ν∂3Vj1

sk )ωj

− (np
j0
ck − ν∂3vj0

ck ,Vj1
ck )ωj − (np

j0
sk − ν∂3vj0

sk ,Vj1
sk )ωj

= −(1,ϕ
j
k )ωj .
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The rest terms in the Green’s formula could be computed in the same way. Finally, we
arrive at

q(uk,Uk) =
J∑

j=1

{(
b

j
ck A

j

ck + b
j
sk A

j

sk − a
j
ck B

j

ck − a
j
sk B

j

sk

)
(ϕ

j
k ,1)ωj

+
(
a

j
ck B

j

sk + b
j
sk A

j

ck − b
j
ck A

j

sk − a
j
sk B

j

ck

)
(ψ

j
k ,1)ωj

}
.

Now we define operatorsπ0
c ,π0

s ,π1
c ,π1

s : D
l±βW(�) → C

J (operatorsπ0
c ,π0

s ,

π1
c ,π1

s : D
l±βW(�)∗ → CJ are defined in the same way) as follows:

π0
c u = (a1

c , a2
c , . . . , aJ

c )t , π0
s u = (a1

s , a
2
s , . . . , aJ

s )t ,

π1
c u = (b1

c , b
2
c , . . . , b

J
c )t , π1

s u = (b1
s , b

2
s , . . . , b

J
s )t ,

where the numbersaj
c ,a

j
s , b

j
c ,b

j
s are the coefficients in expansion (11) of the function

u ∈ D
l
±βW(�) (in expansion (16) forU ∈ D

l
±βW(�)∗). Let

c
j
k =

∫
ωj

ϕ
j
k dxj ′

, d
j
k = −

∫
ωj

ψ
j
k dxj ′

, xj ′ = (x
j
1, x

j
2),

and

Ck = diag{c1
k , c

2
k , . . . , c

J
k }, Dk = diag{d1

k ,d2
k , . . . , dJ

k }
be theJ × J matrices. Taking into account previous results and notations we get the
following formula

q(uk,Uk) = 〈Ckπ
1
c uk −Dkπ

1
s uk,π

0
c Uk〉J + 〈Ckπ

1
s uk +Dkπ

1
c uk,π

0
s Uk〉J

− 〈π0
c uk,Ckπ

1
c Uk+Dkπ

1
s Uk〉J −〈π0

s uk,Ckπ
1
s Uk −Dkπ

1
c Uk〉J , (17)

where〈 , 〉J stands for a scalar product inCJ . We call (17) thegeneralized Green’s
formula.
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REZIUMĖ

M. Skujus. Apie Gryno formul
↪
e vienam Stokso tipo uždaviniui

Laiko atžvilgiu periodinis Stokso uždavinys begalini↪u cilindr ↪u sistemoje Furj˙e eiluči ↪u pagalba suvedamas

↪i elipsini ↪u uždavini↪u sek↪a. Šiems Stokso tipo kraštiniams uždaviniams↪ivedama apibendrintoji Gryno for-
mulė.

Raktiniai žodžiai: begalini↪u cilindr ↪u sistema, laiko atžvilgiu periodinis Stokso uždavinys, apibendrintoji

Gryno formulė.


