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Kernel regression on matrix patterns
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Abstract. In this paper we propose a kernel-based regression model for matrix patterns (KRMP). The
training algorithm is derived. The proposed model was empirically compared with traditional models.
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1. Introduction

In most supervised or unsupervised machine learning models the inputs are described
by vectors. However, there are some important applications where the inputs are sets
of vectors, or matrices (for example, images, graphs, multidimensional time series, and
others). The standard approach is to decompose the input matrix into the vector, but
such decomposition can delete important information about an inner structure of the in-
put matrix. Caiet al.[1] experimentally demonstrated that even in vector cases it can be
useful to reshape the input vector into a matrix. In recent years an interest in this prob-
lem has arisen ([1,2,5,6,3]). Most publications on this topic analyze the linear methods
(for example, see [1,5,6,3]). In this article we introduce a new nonlinear kernel regres-
sion model – KRMP (kernel regression on matrix patterns). In the kernel methods the
initial data vectorsxi are mapped to high dimensional featuresφ(xi). By Mercer’s
theorem, which states that any continuous, symmetric, nonnegative definite function
k(· , · ) can be expressed as an inner product (i.e.,k(xi ,xj ) = φ(xi)

T φ(xj )) [4], com-
putation of the inner products in the feature space is replaced by computation of the
values of the kernel functionk(· , · ). This idea is known as kernel trick.

2. Kernel least squares regression

In this section we briefly describe the traditional kernel least squares regression model
(KR). Let y ∈ R

N be a vector andX = [x1,x2, . . . ,xN ]T (wherexi ∈ R
m) be an obser-

vation matrix. In the linear regression we seek a vectorα which minimizes the norm
‖ y − Xα ‖2. The solution to this problem is defined byα = (XT X)−1XT y.The linear
regression can be extended to nonlinear by mapping the original data into a feature
space. Letk(xi ,xj ) = φ(xi)

T φ(xj ) be a Mercer kernel. In the kernel regression the
original data are mapped into a feature space (i.e., each observationxi is mapped to
φi = φ(xi)). DenotẽX = [φ1,φ2, . . . ,φN ]. We seek the solutiona which minimizes

J =‖ y − X̃
T

a ‖2 (1)
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and is defined in the basis of the columns ofX̃ (i.e.,a = X̃α). The least squares solution

of (1) is defined byα = K−1y, whereK = X̃
T · X̃ is a kernel matrix. To avoid an

overfitting, the regularization often is used. In that case, the norm of the solutionα is
penalized andJ

′ =‖ y− X̃
T

a ‖2 +λ ‖ a ‖2=‖ y − Kα ‖2 +λαT Kα is minimized. The
solution to this problem is defined byα = (K+λI)−1y, whereλ � 0 is a regularization
constant.

3. KRMP model

Denote the training set byT = (Xi , yi)
N
i=1, whereXi – m × n matrices (inputs) and

yi – scalars (outputs) andy = [y1, y2, . . . , yN ]T . In an article [1] Caiet al.proposed a
linear model

ŷ(X) = uT Xv, (2)

whereu ∈ R
m andv ∈ R

n. When the inputs are matrices (especially when they have
large dimensions) Cai’s model has an advantage over standard linear regression be-
cause it has fewer parameters and exploits an inner structure of the input matrix. In the
following a nonlinear version of Cai’s model is proposed.

Let Xi = [xi
1,xi

2, . . . ,xi
n], xi

j ∈ R
m, i = 1, . . . ,N and j = 1, . . . ,n. Fix a Mer-

cer kernelk(xi ,xj ) = φ(xi)
T φ(xj ) and definẽXi = [φ i

1,φ
i
2, . . . ,φ

i
n], whereφi

j =
φ(xi

j ) ∈ R
m′

. We will analyze the following model:

ŷ(X) = uT
(
X̃T A

)
v = uT

( N∑
i=1

αiX̃
T X̃i

)
v = uT

( N∑
i=1

αiK
(
X,Xi

))
v, (3)

whereu,v ∈ R
n, A = ∑N

i=1 αiX̃i , and kernel matrixK(X,Xi) = X̃
T · X̃i . By kernel

trick one can calculatêy(X) knowing only a kernelk(· , · ) and without knowing actual
mappingφ(.). The (2) or (3) models can be applied on regression or classification
problems.

4. Parameter estimation

In this section an algorithm for regularized sum squared error (RSSE) minimization is
formulated. RSSE is defined by

RSSE(..) = 1
2

∑
(x,y)∈T

(
y − uT (X̃T A)v

)2 + 1
2

(
λ1α

T α + λ2uT u + λ3vT v
)
, (4)

whereλ1,λ2,λ3 � 0 are regularization constants. Our aim is to estimate the parameters
u, v andα, which minimizes (4).

For the sake of convenience, defineN×N matrixM= (mi,j ), mij =uT K(Xi ,Xj )v,

andn × n matrix Yi = X̃
T

i · A.
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Differentiate (4) with respect tou andv and set the derivatives to0:

∇uRSSE(..) =
( N∑

i=1

YivvT YT
i

)
u −

( N∑
j=1

yj Yj

)
v + λ2u = 0, (5)

∇vRSSE(..) =
( N∑

i=1

YT
i uuT Yi

)
v −

( N∑
j=1

yj YT
j

)
u + λ3v = 0. (6)

For fixedu andv, optimalα can be found by the well-known least squares formula.
From equations (5), (6) we see that the optimal parameters depend on each other,

thus cannot be computed explicitly. For the parameter optimization the following al-
gorithm can be applied:

Algorithm 1 KRMP

1. Fix arbitraryu,v ∈ R
n, α ∈ R

N , regularization parametersλ1,λ2,λ3 � 0,
t0 ∈ N, ε > 0 and sett = 1.

2. Calculateα = (M + λ1I)−1y.

3. Calculatev = (
∑N

i=1 YT
i uuT Yi + λ3I)−1(

∑N
j=1yj YT

j )u.

4. Calculateu = (
∑N

i=1 YivvT YT
i + λ2I)−1(

∑N
j=1yj Yj )v.

5. Sett := t + 1.

6. Repeat Step 2 untilRSSE < ε or t > t0.

Since with respect toα, u, andv (4) is a convex function, an iterative sequence
of its values, defined by the KRMP algorithm, converges because it monotonically
non-increases and is bounded by 0.

5. Numerical simulations

In this section the (3) model is empirically compared with two supervised machine
learning algorithms: the kernel regression, which is the analogue of (3) when the inputs
are vectors, and support vector machines (SVM, [4]). The results of [1] suggest, that
matrix-based models are efficient with small training samples. However, Caiet al.
worked with linear models. In our experiments we will also use a small part of the data
for the training of the models and check this assumption for nonlinear ones.

The benchmark data sets are three binary classification data sets from UCI ma-
chine learning repository1. In the experiments we used a Gaussian kernelk(xi ,xj ) =
exp

( − ||xi−xj ||2
2σ2

)
. The measure of performance of the models was the correct clas-

sification probability over the testing set. In each experiment the training set was

1http://archive.ics.uci.edu/ml/
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selected randomly, all experiments were performed 100 times, and the results were
averaged. The meta-parameters (a bandwidthσ , regularization constants, etc.) were
selected using cross validation.

5.1. Data sets

The Ionospheredata set consists of 351 observations, which have 34 features. The
variance of the 2nd feature is zero, so this feature is removed. For training of the
models 20 random examples are selected; the others are left for testing. For the KRMP
model the input vectors are preprocessed into 3× 11 matrices.

SPECTFdata set consists of 80 observations, which have 44 features. For the
KRMP model the input vectors are preprocessed into 4× 11 matrices. In this case
10 observations are randomly selected for the training of the models.

In Australian credit approvaldata set the input data consists of 690 14-dimensional
input vectors. When KRMP is used, the initial data vectors are preprocessed into the
2×7 matrices. For training of the models 10 training examples are selected, others are
left for testing.

5.2. Empirical results

Sign “>” means thatp-value in the signed rank test for zero median between differen-
ces of the performances of the models was < 0.01, “∼” means the opposite case. From
the Table 1 we see that the KRMP model was more efficient than the traditional kernel
regression (KR) model and performed similarly or better than SVM. In our opinion
the KRMP was more effective than the KR because of the model structure.

Table 1. Correct classification probabilities

Correct classification probabilities

Dataset KRMP KR SVM KRMP vs KR KRMP vs SVM

Ionosphere 0.86 0.80 0.83 > ∼
SPECTF 0.68 0.65 0.65 > >

Australian 0.73 0.71 0.69 > >
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REZIUMĖ

P. Daniušis, P. Vaitkus. Branduolin˙e regresija matricoms

Šiame straipsnyje pasi¯ulytas branduolin˙es regresijos modelis, kai modelio
↪
iėjimai yra matricos, pateiktas

jo apmokymo algoritmas, pasi¯ulytas modelis empiriškai palygintas su tradiciniais modeliais.

Raktiniai žodžiai:matriciniai
↪
iėjimai, branduoliniai metodai, regresija, klasifikavimas.


