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On calculation of recursive M- and GM-estimates
In LQG control systems
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Abstract. The aim of the given paper is development of a parametric identification approach for a closed-
loop system when the parameters of a discrete-time linear time-invariant (LTI) dynamic system as well
as that of LQG (Linear Quadratic Gaussian) controller are not known and ought to be calculated. The
recursive techniques based on an the maximum likelihood (M) and generalized maximum likelihood (GM)
estimator algorithms are applied here in the calculation of the system as well as noise filter parameters.
Afterwards, the recursive parameter estimates are used in each current iteration to determine unknown
parameters of the LQG-controller, too. The results of numerical simulation by computer are discussed.
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1. Introduction

The stochastic optimal control of a discrete-time LTI dynamic system is performed
using the LQG approach [1]. In designing a robust control system, one ought to de-
termine the type of uncertainties appearing in the system to be controlled [6]. On the
other hand, there are many types of uncertainties in system description models. One
of the main ones of them is the uncertainty arising in the output disturbance descrip-
tion of a plant model to be used. It is assumed frequently that output of the system
is affected by Gaussian disturbance. However, nonnormal noise, and particularly the
presence of outliers, degrades the performance of a system acting in a closed-loop.
Therefore ordinary recursive techniques used for a parametric identification of LQG
control systems, as a rule, are inefficient. In such a case, robust recursive techniques
ought to be applied here.

In what follows, we introduce the robust recursive GM- and M- procedures for
calculating robust estimates of the parameters of LTI dynamic systems, acting in a
closed-loop in the case of correlated noise with outliers in it. Note that the class of
GM-estimators contains a class of maximum likelihood type estimators. The class of
GM-estimators is defined implicitly by the first order condition

N
D x¢{x@). [y@) = x" ()61/o } =0. (1)
t=1

Here x(¢) is the set of regressors, denotes the scale of residual&) of the linear

regression model(r) = x (1)0 + 8(r), t =1,..., N whereg is a vector of unknown
parameters. The functiary-, -} in (1) depends on both the set of regressqr$ and
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the standardized residu&{r)/o. The conditions that ought to be satisfied &y, -}

in order that the GM-estimator have nice asymptotic properties are known in advance

[4]. The ordinary least-squares estimator could be obtained as a special case of (1) by
setting in it the functiorr (x(r), r) = r2/2 with 87 (x(¢), r)/dr = £ {X(1), r}, wherer is

a short form of the standardized residual. In such a case, the class of M-estimators is
obtained by setting (X(¢), r) = p(r), with dp (r) /dr = ¥ (r). Variousy (-) functions

lead to various M-estimates.

2. The Statement of the Problem

Assume that a control system to be observed is causal, linear, and time-invariant with
one outpuf y(k)} and one inpufu(k)}, expressed by the equation

y(k) = Golg™Y; 0)u(k) + Holg™L; 0) k), )
B e —
v(k)

that consists of two parts (Fig. 1): a system mod@eglg —1; 6) and a noise model
Ho(g~L; ¢). Herek is the current number of observations of a respective signal,
are unknown parameter vectors to be estimaged, is the backward time-shift op-
erator such thay ~1u(k) = u(k — 1), {¢(k)} is used to generate unmeasurable noise
{v()}.

The aim of the given paper is to estimate the parameter véatbthe LTI system
Go(g~1; 0), acting in the closed-loop simultaneously with the current parameter vec-
tor « of the LQG controllerG g(¢—1; «), by observationgu(k), y(k)} Vk =1,2, ...,
in the case of additive correlated noiggk)}, that contains large outliers and corrupts
the output{y(k)} of the system.

3. ldentification in the presence of outliers

Given the model (Fig. 1) and dafd’ = {u(1),...,u(N), y(1),..., y(N)} and assum-
ing that the white nois€ (k)}, k =1, 2, ... is really a sequence of independent identi-
cally distributed variables with asrcontaminated distribution of the forp(& (k)) =
(1—€)N(0.0%) +€N(0,02), and the variance%.2 =(1—¢€)o? +€a?, one can de-
termine the prediction error estimatig of the parameter vectat” = (a’,b’) =
(a....,am,bo,b1,...,by,) by minimizing y = argmingep,, Vy(©,Z") with

&(k) (k)
» Hj f

r(k) e(k) u(k ulk
bi; » GH (*) Gt] },..__{;(})

Fig. 1. A closed-loop system to be observed. Hefe= G (¢~ L o) Go = Go(g~1; 6), and
Ho=Ho(qg™1; ).
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Vn(,ZV) = 2 S 1 p(ep(k,0/s)), or by solving the equatiod "\ ; z(t){y [y (1) —

zI ()01} = 0, in the vector form. Here{£(k)} is the probability density distribution
of the sequencé& (k)},k=1,2,...; E(k) = (1 — yi) i + yr sk is the value of the se-
guencelé(k)}, k=1,2,... atatime moment; y is a random variable, taking values
0 or 1 with probabilitiesp(yy =0) =1 —¢, p(yx = 1) = €; ui, g are sequences of
independent Gaussian variables with zero means and variaﬁce§, respectively;
besidesg,, < o.;0< € < 1isthe unknown fraction of contaminaticfy, is the robust
estimate of the parameter vectprestablished by processiig pairs of input-output
samplessy is the scale of residuali(-) is a real-valued function that is even and non-
decreasing for positive residuals, gn®) =0,y = p’.

To get a better performance 6f in the case of very long-tailed distributions, a
function Vy (0, ZN) satisfyingy (x) =0, if | x |> cy, for somecy > 0 could be se-
lected.

The currentM - estimates of an unknown vector of the paramefeo$§ LTI system
with G (g, 6) of the form

Bghib)  bo+bigt+bog 2+ 4 bpug ™"
A1 @) 1+aig= 4+ ang™

Golg™ L 0) = 3)

according to [5] can be calculated using three techniquess4gorithm, theH -al-
gorithm, and thé¥-one:
[k — 1)z(k)
A(k) 4+ 2T (k)T (k — 1)z(k)
I'(k — Dz(k)z" ()T (k — 1)
rk) + 2T ()T (k — Dz(k)

0(k)=0(k — 1)+ B k), (4)

T(k)=Tk —1)—

Hered (k) = (b(k), ak)), b (k) = (bo, b1, ..., bm)k, andal (k) = (4q, ..., 4 are
vectors of current estimates of parametef¢k) = sy[a (k)] with a(k) = &(k)/s
for S- and H-algorithms, and8 (k) = §&(k) for the W-algorithm;z(k)/s = {y (k) —
27 ()0 (k — 1)}/s is the same for all the three algorithms, whil¢k) = 1 for the
H-algorithm

. g R
A = {1sw[a(k)]/8(k)} for 8(k) #0, -

foré(k) =0,

for the W-algorithm; (k) = w/[oe(k)]*l for the S-algorithm. Heres is the robust es-
timate of the scale of residuals. In a case of thealgorithm the ordinary RLS (4)

is modified by substituting the “winsorization” step of the residuals in the first equa-
tion and changing the second equation in equations (4). The recuisaigorithm

is obtained only by inserting the “winsorization” step into the first equation of equa-
tions (4). TheW - algorithm is worked out by inserting different weights in respect to
the functiony/{-} into the already existing ordinary RLS. In [2] in a case of known pa-
rameters of the LQG controller it has been proposed toadge= §¢,1¥ [ (k) /2],
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and

davlak)/d.2]/lak)/d2] fora(k) #0,
Ak = { ©)
$21 fora(k) =0
respectively. Her@,1 = ¢,» = 1 for Huber'sM-estimator;p,1 = ¢.[h(k)], for Mal-
low’s, and¢,1 = ¢,2 = ¢,[h(k)], for Shweppe’'sG M-estimators, respectively, where

¢.[h(k)] = I = h(k) with h(k) = 2 (k)T (k)z(k).

4. Simulation example

A closed-loop system to be simulated is shown in Fig. 1 and described by a lin-
ear difference equation of the form [8] + a1g Yy (k) = (1 + b1g DHuk) + (L +
c1g~HE(k), while the controller design equation igk) = e(k) + wiu(k — 1) +
wou(k — 2), wheree(k) = r(k) — y(k). Herea; = —0.985,b; = 2 andc¢, = —0.7.

The coefficients of the LQG controller are fouadcording to [3] by the formulas:

w1 = p+c1—ayg; andwy = (p — a1)(c —a1) (b1 — a1)~tb assuming that time delay

is equal to zero andg = 1. Then such values of coefficients of the LQG controller are
calculated beforehandi; = 0.1005 wo = —0.1016 The outputy(k),k =0,1,2, ...

of the closed-loop system is observed under the additive nagise k =0, 1,2, ...
containing outliers (see Fig. 2). We calculate estimates of the paranagtérs c;

by processing observations pf(k)} and{u(k)} in each current iteratiok using the
H-algorithm with versions of M-estimator of Huber and Shwepgeld-estimator, re-
spectively. Afterwards, in each current iteratibtthe coefficientav1, wo were deter-
mined using above mentioned formulas despite which recursive estimation technique
of the parametersy, b1, c; was used.

10 experiments with different realizations of additive correlated nfaige)} were
carried out in order to investigate more precisely and to compare the accuracy of es-
timates of the parameter vect®of the LTI systemGo(g~—1; 6) simultaneously with
the current parameter vecterof the LQG controllerG ¢ (¢ —%; «), obtained using the
H-algorithm with a version of Huber’'s M-estimator and S-algorithm with version of

| |
f«' L*'"' l ‘l i W
o "'”ﬁ fl nl L (e &I ‘Iw\l'»l‘T,wl\‘."l o

Fig. 2. Signals of a noisy closed-loop system in the presence of outliet®)ife = 0.1): 1) the reference
signalr (k), 2) the outputy (k) corrupted by an additive noise with outliersin it, 3) the inp(k).
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Shweppe’sG M-estimator. We have used the Monte Carlo simulation with 10 data
sets, each containing 406dut-output observation pairs in the case of additive corre-
lated noisgv(k)}, having large outliers and corrupting the outputk)} (see Fig. 2).

In eachith experiment the estimates of parameters- —0.985 b1 = 2,¢1 = —0.7,

and w; = 0.1005 w; = —0.1016 have been determined. Table 1 illustrates the val-
ueshy, a, c1 of estlmatesbl(k) ai(k), c1(k), (averaged by 10 experiments), and their
confidence intervals

Oby Oay c1 T AR
A1 :tta\/ﬁ’ Ao :tta\/ﬁ’ A3z = :tta\/ﬁ Vk=1,400 (7)
Heredy,,, 64, 6., are estimates of the standard deviatiops oy, , o.,, respectively;
a = 0.05 is the significance level, = 2.26 is the 1001 — «)% point of Student’s dis-
tribution with L — 1 degrees of freedond; = 10 is the number of experiments. Table 2
illustrates the value®1, w, of estimatesbs (k), w2 (k), (averaged by 10 experiments),
and their confidence intervals

Owy wp TA00

Ay :tta\/ﬁ’ Ag = :tta\/ﬁ Vk=1,400 (8)
Here g, , 6., are estimates of the standard deviations, o,,,, respectively; Note
that in both tables the first line of eadhcorresponds to the averaged estimates
and their confidence intervals which were calculated using the S-algorithm with
Shweppe’sG M -estimator while the second one — to the same values calculated by
the H-algorithm with a version of Huber's M-estimator. The analysis of the estimates,
presented in Tables 1, 2, implies that the results obtained by the S-algorithm with
Shweppe’sG M -estimator corroborate the fact that it is more appreciable than the
H-algorithm with a version of Huber’'s M-estimator because of a higher accuracy of
recursive estimates.

Table 1. The averaged estimates of parametges —0.985,b1 = 2, ¢ = —0.7 and their
confidence intervals for differeit

Observations The averaged estimates of parameters
k a b1 a1
45 —0.997+0.003 1081+ 0.015 —0.110+0.008
—0.997+0.003 1081+ 0.015 —0.110+0.008
100 —0.993+ 0.006 1371+ 0.168 —0.396+ 0.089
—0.966+ 0.029 2453+ 0.074 —0.169+ 0.251
200 —0.988+0.010 1689+ 0.213 —0.418+0.054
—0.975+0.012 2397+ 0.098 —0.223+0.241
300 —0.984+ 0.007 1925+ 0.213 —0.400+ 0.004
—0.977+0.010 2384+ 0.094 —0.234+0.228
400 —0.984+ 0.009 2075+ 0.196 —0.367+0.003

—0.977+0.009 23744+ 0.092 —0.263+£0.216
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Table 2. The averaged estimates of parameters 0.1005 wp = —0.1016
and their confidence intervals for different

Observations The averaged estimates of parameters
k wy w2
45 —0.154+ 0.003 —0.119+ 0.002
—0.154+0.003 —0.119+ 0.002
100 Q0115+ 0.096 —0.097+ 0.039
—0.194+0.237 —0.178+ 0.094
200 Q0110+ 0.067 —0.1164+0.018
—0.142+0.239 —0.1964+ 0.061
300 Q072+ 0.100 —0.128+0.020
—0.122+0.224 —0.191+0.058
400 Q0028+ 0.062 —0.144+4+0.022
—0.102+0.217 —0.1864+ 0.057
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REZIUME

R. Pupeikis. Apierekurentiniy M- ir GM- jverciu skaiCiavima L QG valdymo sistemose

Straipsnyje vystomas parametrinio LQG (tiesinis kvadratinis Gauso) valdymo sistemtifikavimo
metodas, kai tieses pastowi koeficient sistemos bei LQG reguliatoriaus parametrai esti nezinomi ir
turi buti skaiciuojami. Pateikti LQG valdymo sistemos modeliavimo bei jos parametrinio identifikavimo
rezultatai.

Raktiniai ZodZiai: LQG valdymo sistemos, gatamasis rySys, identifikavimas.



