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On calculation of recursive M- and GM-estimates
in LQG control systems
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Abstract. The aim of the given paper is development of a parametric identification approach for a closed-
loop system when the parameters of a discrete-time linear time-invariant (LTI) dynamic system as well
as that of LQG (Linear Quadratic Gaussian) controller are not known and ought to be calculated. The
recursive techniques based on an the maximum likelihood(M) and generalized maximum likelihood(GM)
estimator algorithms are applied here in the calculation of the system as well as noise filter parameters.
Afterwards, the recursive parameter estimates are used in each current iteration to determine unknown
parameters of the LQG-controller, too. The results of numerical simulation by computer are discussed.
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1. Introduction

The stochastic optimal control of a discrete-time LTI dynamic system is performed
using the LQG approach [1]. In designing a robust control system, one ought to de-
termine the type of uncertainties appearing in the system to be controlled [6]. On the
other hand, there are many types of uncertainties in system description models. One
of the main ones of them is the uncertainty arising in the output disturbance descrip-
tion of a plant model to be used. It is assumed frequently that output of the system
is affected by Gaussian disturbance. However, nonnormal noise, and particularly the
presence of outliers, degrades the performance of a system acting in a closed-loop.
Therefore ordinary recursive techniques used for a parametric identification of LQG
control systems, as a rule, are inefficient. In such a case, robust recursive techniques
ought to be applied here.

In what follows, we introduce the robust recursive GM- and M- procedures for
calculating robust estimates of the parameters of LTI dynamic systems, acting in a
closed-loop in the case of correlated noise with outliers in it. Note that the class of
GM-estimators contains a class of maximum likelihood type estimators. The class of
GM-estimators is defined implicitly by the first order condition

N∑
t=1

x(t)ζ
{
x(t), [y(t) − xT (t)θ]/σ} = 0. (1)

Herex(t) is the set of regressors,σ denotes the scale of residualsn(t) of the linear
regression modely(t) = xT (t)θ + δ(t), t = 1, . . . ,N whereθ is a vector of unknown
parameters. The functionζ {·, ·} in (1) depends on both the set of regressorsx(t) and
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the standardized residualδ(t)/σ . The conditions that ought to be satisfied byζ {·, ·}
in order that the GM-estimator have nice asymptotic properties are known in advance
[4]. The ordinary least-squares estimator could be obtained as a special case of (1) by
setting in it the functionτ(x(t), r) = r2/2 with ∂τ(x(t), r)/∂r = ζ {x(t), r}, wherer is
a short form of the standardized residual. In such a case, the class of M-estimators is
obtained by settingτ(x(t), r) = ρ(r), with dρ(r)/dr = ψ(r). Variousψ(·) functions
lead to various M-estimates.

2. The Statement of the Problem

Assume that a control system to be observed is causal, linear, and time-invariant with
one output{y(k)} and one input{u(k)}, expressed by the equation

y(k) = G0(q
−1; θ )u(k) + H0(q

−1;ϕ)ξ(k)︸ ︷︷ ︸
v(k)

, (2)

that consists of two parts (Fig. 1): a system modelG0(q
−1; θ) and a noise model

H0(q
−1;ϕ). Herek is the current number of observations of a respective signal,θ,ϕ

are unknown parameter vectors to be estimated,q−1 is the backward time-shift op-
erator such thatq−1u(k) = u(k − 1), {ξ(k)} is used to generate unmeasurable noise
{v(k)}.

The aim of the given paper is to estimate the parameter vectorθ of the LTI system
G0(q

−1; θ ), acting in the closed-loop simultaneously with the current parameter vec-
tor α of the LQG controllerGR(q−1;α), by observations{u(k),y(k)} ∀k = 1,2, . . .,
in the case of additive correlated noise{v(k)}, that contains large outliers and corrupts
the output{y(k)} of the system.

3. Identification in the presence of outliers

Given the model (Fig. 1) and dataZN = {u(1), . . . ,u(N),y(1), . . . , y(N)} and assum-
ing that the white noise{ξ(k)}, k = 1,2, . . . is really a sequence of independent identi-
cally distributed variables with anε-contaminated distribution of the formp(ξ(k)) =
(1 − ε)N(0,σ 2

µ) + εN(0,σ 2
ς ), and the varianceσ 2

ξ = (1 − ε)σ 2
µ + εσ 2

ς , one can de-

termine the prediction error estimatêθN of the parameter vectorθT = (aT ,bT ) =
(a1, . . . , am,b0, b1, . . . , bm) by minimizing θ̂N = arg minθ∈DM

ṼN(θ,ZN) with

Fig. 1. A closed-loop system to be observed. HereGR ≡ GR(q−1;α) G0 ≡ G0(q
−1; θ ), and

H0 ≡ H0(q
−1;ϕ).
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ṼN(θ,ZN) = 1
N

∑N
k=1 ρ(eF (k, θ/s)), or by solving the equation

∑N
t=1 z(t){ψ[y(t) −

zT (t)θ]} = 0, in the vector form. Herep{ξ(k)} is the probability density distribution
of the sequence{ξ(k)}, k = 1,2, . . .; ξ(k) = (1− γk)µk + γkςk is the value of the se-
quence{ξ(k)}, k = 1,2, . . . at a time momentk; γ is a random variable, taking values
0 or 1 with probabilitiesp(γk = 0) = 1 − ε,p(γk = 1) = ε; µk,ςk are sequences of
independent Gaussian variables with zero means and variancesσ 2

µ,σ 2
ς , respectively;

besides,σµ < σς ; 0� ε � 1 is the unknown fraction of contamination;θN is the robust
estimate of the parameter vectorθ , established by processingN pairs of input-output
samples;s is the scale of residual;ρ(·) is a real-valued function that is even and non-
decreasing for positive residuals, andρ(0) = 0, ψ = ρ ′.

To get a better performance ofθ̂N in the case of very long-tailed distributions, a
function ṼN(θ,ZN) satisfyingψ(x) = 0, if | x |> cH , for somecH > 0 could be se-
lected.

The currentM- estimates of an unknown vector of the parametersθ of LTI system
with G(q,θ) of the form

G0(q
−1; θ) = B(q−1; b)

A(q−1; a)
= b0 + b1q

−1 + b2q
−2 + · · · + bmq−m

1+ a1q
−1 + · · · + amq−m

(3)

according to [5] can be calculated using three techniques: theS-algorithm, theH -al-
gorithm, and theW -one:

θ̂ (k)=θ̂ (k − 1)+ �(k − 1)z(k)

λ(k) + zT (k)�(k − 1)z(k)
β(k), (4)

�(k)=�(k − 1)− �(k − 1)z(k)zT (k)�(k − 1)

λ(k) + zT (k)�(k − 1)z(k)
.

Here θ̂(k) = (b̂(k), â(k)), b̂T (k) = (b̂0, b̂1, . . . , b̂m)k , and âT (k) = (â1, . . . , âm)k are
vectors of current estimates of parameters;β(k) = ŝψ[α(k)] with α(k) = ε̂(k)/ŝ

for S- andH -algorithms, andβ(k) = ŝε̂(k) for the W -algorithm; ε̂(k)/ŝ = {y(k) −
zT (k)θ̂ (k − 1)}/ŝ is the same for all the three algorithms, whileλ(k) = 1 for the
H -algorithm

λ(k) =
{

{ŝψ[α(k)]/ε̂(k)}−1 for ε̂(k) �= 0,

1 for ε̂(k) = 0,
(5)

for theW -algorithm;λ(k) = ψ
′ [α(k)]−1 for theS-algorithm. Herês is the robust es-

timate of the scales of residuals. In a case of theS-algorithm the ordinary RLS (4)
is modified by substituting the “winsorization” step of the residuals in the first equa-
tion and changing the second equation in equations (4). The recursiveH -algorithm
is obtained only by inserting the “winsorization” step into the first equation of equa-
tions (4). TheW - algorithm is worked out by inserting different weights in respect to
the functionψ{·} into the already existing ordinary RLS. In [2] in a case of known pa-
rameters of the LQG controller it has been proposed to useβ(k) = ŝφz1ψ[α(k)/φz2],
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and

λ(k) =
{

φz1ψ[α(k)/φz2]/[α(k)/φz2] for α(k) �= 0,

φz1 for α(k) = 0,
(6)

respectively. Hereφz1 = φz2 = 1 for Huber’sM-estimator;φz1 = φz[h(k)], for Mal-
low’s, andφz1 = φz2 = φz[h(k)], for Shweppe’sGM-estimators, respectively, where
φz[h(k)] = √

1− h(k) with h(k) = zT (k)�(k)z(k).

4. Simulation example

A closed-loop system to be simulated is shown in Fig. 1 and described by a lin-
ear difference equation of the form [3](1 + a1q

−1)y(k) = (1 + b1q
−1)u(k) + (1 +

c1q
−1)ξ(k), while the controller design equation isu(k) = e(k) + w1u(k − 1) +

w2u(k − 2), wheree(k) = r(k) − y(k). Herea1 = −0.985, b1 = 2 andc1 = −0.7.
The coefficients of the LQG controller are foundaccording to [3] by the formulas:
w1 = p + c1 − a1; andw2 = (p − a1)(c − a1)(b1 − a1)

−1b assuming that time delay
is equal to zero andw0 = 1. Then such values of coefficients of the LQG controller are
calculated beforehand:w1 = 0.1005,w2 = −0.1016. The outputy(k), k = 0,1,2, . . .

of the closed-loop system is observed under the additive noisev(k), k = 0,1,2, . . .

containing outliers (see Fig. 2). We calculate estimates of the parametersa1, b1, c1
by processing observations of{y(k)} and{u(k)} in each current iterationk using the
H-algorithm with versions of M-estimator of Huber and Shweppe’sGM-estimator, re-
spectively. Afterwards, in each current iterationk the coefficientsw1,w2 were deter-
mined using above mentioned formulas despite which recursive estimation technique
of the parametersa1, b1, c1 was used.

10 experiments with different realizations of additive correlated noise{v(k)} were
carried out in order to investigate more precisely and to compare the accuracy of es-
timates of the parameter vectorθ of the LTI systemG0(q

−1; θ ) simultaneously with
the current parameter vectorα of the LQG controllerGR(q−1;α), obtained using the
H-algorithm with a version of Huber’s M-estimator and S-algorithm with version of

Fig. 2. Signals of a noisy closed-loop system in the presence of outliers inv(k) (ε = 0.1): 1) the reference
signalr(k), 2) the outputy(k) corrupted by an additive noise with outliers in it, 3) the inputu(k).



226 R. Pupeikis

Shweppe’sGM-estimator. We have used the Monte Carlo simulation with 10 data
sets, each containing 400 input-output observation pairs in the case of additive corre-
lated noise{v(k)}, having large outliers and corrupting the output{y(k)} (see Fig. 2).
In eachith experiment the estimates of parametersa1 = −0.985, b1 = 2, c1 = −0.7,
andw1 = 0.1005,w2 = −0.1016 have been determined. Table 1 illustrates the val-
uesb̄1, ā1, c̄1 of estimateŝb1(k), â1(k), ĉ1(k), (averaged by 10 experiments), and their
confidence intervals

�1 =±tα
σ̂b1√
N

, �2 =±tα
σ̂a1√
N

, �3 =±tα
σ̂c1√
N

∀ k=1,400. (7)

Here σ̂b1, σ̂a1, σ̂c1 are estimates of the standard deviationsσb1,σa1,σc1, respectively;
α = 0.05 is the significance level;tα = 2.26 is the 100(1−α)% point of Student’s dis-
tribution withL−1 degrees of freedom;L = 10 is the number of experiments. Table 2
illustrates the values̄w1, w̄2 of estimatesŵ1(k), ŵ2(k), (averaged by 10 experiments),
and their confidence intervals

�4 =±tα
σ̂w1√

N
, �5 =±tα

σ̂w2√
N

∀ k=1,400. (8)

Here σ̂w1, σ̂w2 are estimates of the standard deviationsσw1,σw2 , respectively; Note
that in both tables the first line of eachk corresponds to the averaged estimates
and their confidence intervals which were calculated using the S-algorithm with
Shweppe’sGM-estimator while the second one – to the same values calculated by
the H-algorithm with a version of Huber’s M-estimator. The analysis of the estimates,
presented in Tables 1, 2, implies that the results obtained by the S-algorithm with
Shweppe’sGM-estimator corroborate the fact that it is more appreciable than the
H-algorithm with a version of Huber’s M-estimator because of a higher accuracy of
recursive estimates.

Table 1. The averaged estimates of parametersa1 = −0.985,b1 = 2, c1 = −0.7 and their
confidence intervals for differentk

Observations The averaged estimates of parameters

k ā1 b̄1 c̄1

45 −0.997± 0.003 1.081± 0.015 −0.110± 0.008
−0.997± 0.003 1.081± 0.015 −0.110± 0.008

100 −0.993± 0.006 1.371± 0.168 −0.396± 0.089
−0.966± 0.029 2.453± 0.074 −0.169± 0.251

200 −0.988± 0.010 1.689± 0.213 −0.418± 0.054
−0.975± 0.012 2.397± 0.098 −0.223± 0.241

300 −0.984± 0.007 1.925± 0.213 −0.400± 0.004
−0.977± 0.010 2.384± 0.094 −0.234± 0.228

400 −0.984± 0.009 2.075± 0.196 −0.367± 0.003
−0.977± 0.009 2.374± 0.092 −0.263± 0.216
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Table 2. The averaged estimates of parametersw1 = 0.1005,w2 = −0.1016
and their confidence intervals for differentk

Observations The averaged estimates of parameters

k w̄1 w̄2

45 −0.154± 0.003 −0.119± 0.002
−0.154± 0.003 −0.119± 0.002

100 0.115± 0.096 −0.097± 0.039
−0.194± 0.237 −0.178± 0.094

200 0.110± 0.067 −0.116± 0.018
−0.142± 0.239 −0.196± 0.061

300 0.072± 0.100 −0.128± 0.020
−0.122± 0.224 −0.191± 0.058

400 0.028± 0.062 −0.144± 0.022
−0.102± 0.217 −0.186± 0.057
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REZIUMĖ

R. Pupeikis. Apie rekurentini ↪u M- ir GM- ↪iverči ↪u skaičiavim ↪a LQG valdymo sistemose

Straipsnyje vystomas parametrinio LQG (tiesinis kvadratinis Gauso) valdymo sistem↪u identifikavimo
metodas, kai tiesin˙es pastovi↪u koeficient↪u sistemos bei LQG reguliatoriaus parametrai esti nežinomi ir
turi būti skaičiuojami. Pateikti LQG valdymo sistemos modeliavimo bei jos parametrinio identifikavimo
rezultatai.

Raktiniai žodžiai: LQG valdymo sistemos, gr↪ižtamasis ryšys, identifikavimas.


