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Proof-search of propositional intuitionistic logic
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Abstract. In the paper, we define some classes of sequents of the propositional intuitionistic logic. These
are classes of primarily andα-primarily reducible sequents. Then we show how derivability of these se-
quents in a propositional intuitionistic logic sequent calculusLJ0 can be checked by means of a proposi-
tional classical logic sequent calculusLK0.
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1. Introduction

In the paper, we define some classes of sequents of the propositional intuitionistic
logic. These are classes of primarily andα-primarily reducible sequents. Then we
show how derivability of these sequents in apropositional intuitionistic logic sequent
calculusLJ0 can be checked by means of a propositional classical logic sequent cal-
culus LK0. The paper is organized as follows. First, we introduce the calculiLK0
andLJ0. Then, we define the class of primarily reducible sequents. Further we modify
LK0 andLJ0 and introduce the class ofα-primarily reducible sequents. In the end, we
define a subclass ofα-reducible sequents by introducing some restriction on syntax of
sequents.

2. Calculi LK0 and LJ0

CalculusLK0 is a variant of the classical propositional Gentzen-like sequent calculus.
It is defined as follows:

1. Axioms:�,E → E,�.

2. Rules:

A,B,� → �

A ∧ B,� → �
(∧ →),

� → A,�;� → B,�

� → A ∧ B,�
(→ ∧),

A,� → �;B,� → �

A ∨ B,� → �
(∨ →),

� → A,B,�

� → A ∨ B,�
(→ ∨),
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� → A,�

�,¬A → �
(¬ →),

�,A → �

� → ¬A,�
(→ ¬),

� → A,�;B,� → �

A ⊃ B,� → �
(⊃→),

�,A → B,�

� → A ⊃ B,�
(→⊃).

Here: E denotes an atomic formula;A and B denote arbitrary formulas;� and �

denote finite, possibly empty, multisets of formulas.
LJ0 is a variant of the intuitionistic propositional Gentzen-like sequent calculus. It

is obtained fromLK0 by the following changes. There is at most one formula in the
succedent. Thus,� = ∅ in the succedent rules. Also.

Rule(→ ∨) is replaced by the following one:

� → A or B

� → A ∨ B
(→ ∨).

Rule(¬ →) is replaced by

�,¬A → A

�,¬A → �
(¬ →).

Rule(⊃→) is replaced by

�,A ⊃ B → A;B,� → �

�,A ⊃ B → �
(⊃→).

We introduce here some notation. We denote a derivation tree byV and the height
of the derivation tree byh(V ). The height of a derivation tree is reckoned to be the
length of the longest branch in it. The length of a branch is measured by the number
of rule applications in it.

Now we present some well known properties ofLK0 andLJ0. All LK0 rules are
strongly invertible. I.e., if the conclusion is derivable, then also is the/each premise;
moreover, there exists a derivation of the/each premise such that its height is less or
equal than that one of the conclusion.

All LJ0 rules, except(→ ∨), (¬ →), and(⊃→), are strongly invertible.(⊃→) is
strongly invertible with respect to the right premise. I.e.,�V �,A ⊃ B → � implies
the existence ofV ′ such that�V ′

�,B → � andh(V ′) � h(V ).
The following properties hold for bothLK0 andLJ0. Any sequent of the shape

�,D → D,� is derivable (D any formula). The rules of weakening and contraction
are strongly admissible. The rule of cut is admissible. The calculi are correct and com-
plete.

We will freely apply these properties further.

3. Primary sequents

Glivenko proved in [1] that a formula beginning with ’¬’ is derivable in a classi-
cal propositional logic calculus iff it is derivable in its intuitionistic counterpart. Due
to rule invertibility, a sequentA1, . . . ,An → is derivable inLK0 iff the sequent
→ ¬(A1 ∧ . . . ∧ An) is derivable inLK0. According to the Glivenko theorem, the
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last sequent is derivable inLK0 iff it is derivable inLJ0. Thus, we have that a sequent
with the empty succedent is derivable in a classical propositional logic calculus iff it
is derivable in its intuitionistic counterpart. See also [2].

A sequent of the shape�,¬� → � is called primary. Here� is the empty set or a
multiset consisting of atomic formulas;¬� is the empty set or a multiset of formulas
each of which is preceded by ’¬’; � is the empty set or an atomic formula.

If � = ∅ or � ∩ � 	= ∅, then a primary sequentS = �,¬� → � is derivable in
LK0 iff it is derivable inLJ0. If � = E, then only(¬ →) is applicable toS. But then
� is dropped, andLJ0 � �,¬� → � iff LJ0 � �,¬� →. The last sequent, by the
Glivenko theorem, is derivable inLJ0 iff it is derivable in LK0. Thus, in this case,
we have thatLJ0 � �,¬� → � iff LK0 � �,¬� →. E.g., instead of considering
¬¬A → A in LJ0, we can consider¬¬A → in LK0 (A atomic).

We denote a derivation tree with a sequentS at the bottom byV (S).
A sequentS is called primarily reducible iff there exists anLJ0 derivation tree

V (S) such that only invertible rules ofLJ0 are applied in it (i.e., any rule except
(¬ →), (⊃→), and(→ ∨)) and each leaf of which is an axiom, a primary sequent,
or a sequent with the empty succedent. Such a tree is called a primary reduction tree.
E.g., any sequent of the shape� → ¬A is primarily reducible: applying(→ ¬) to this
sequent, we get the primary reduction tree.

Suppose thateach leaf of a primary reduction treeV (S) is of the shape�,D →
D,� (D any formula) or a sequent with the empty succedent. Then each such a leaf
is derivable inLJ0 iff it is derivable inLK0. Note also that the invertible rules ofLJ0
coincide with the corresponding ones ofLK0 for sequents with at most one formula
in the succedent. Due to the fact that all rules ofLK0 are invertible, rule application
order has no impact on derivability inLK0. Therefore,LJ0 � S iff LK0 � S.

If a primary reduction treeV (S) has a non-axiom leaf with an atomE in the succe-
dent, thenE must be removed before we can consider the leaf inLK0. Therefore, in
this case, though we use only invertible rules, we cannot considerS directly in LK0
in order to check if it is derivable inLJ0. We construct the reduction tree first, then
replace eachnon-axiom leaf of the shape�,¬� → E by�,¬� →, and then consider
the non-axiom leaves inLK0.

4. Modifications of LK0 and LJ0

In this section, we use the ideas of [3] and [4]. We mention also [5] and [6]. Let
LK′

0 andLJ ′
0 be the calculi obtained fromLK0 andLJ0, respectively, by making

the restriction thatA in the explicit A ⊃ B in the rule(⊃→) is not atomic and by
introducing a new derivation rule:

E,B,� → �

E,E ⊃ B,� → �
(E ⊃→).

HereE is atomic. This rule corresponds to the(⊃→) rule with the exception that the
left premiseE,� → E,� (calculusLK0) is dropped. Note that(E ⊃→) is strongly
invertible because(⊃→) is strongly invertible with respect to the right premise in both
LK0 andLJ0.
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LK′′
0 = LK′

0 ∪ LK0 andLJ ′′
0 = LJ ′

0 ∪ LJ0.
By, e.g.,(→ A ∧ B), we denote an application of(→ ∧) with A ∧ B as the main

formula, etc.

LEMMA 4.1. Let Calc ∈ {LK′′
0 ,LJ ′′

0 } and Calc �V S, where S is any se-
quent. Suppose further that the first rule applied inV counting from the bottom is
(E ⊃ D →), whereE is atomic, and there are no other applications of this shape in
V . Then there existsV ′ such thatCalc �V ′

S andV ′ is free of rule applications of the
type(E ⊃ D →) (E any atomic,D arbitrary).

LEMMA 4.2. Let Calc ∈ {LK0,LJ0} andS be an arbitrary sequent.Calc � S iff
Calc′ � S.

Proof. 1) Calc′ � S ⇒ Calc � S. This is obvious.
2) Calc �V S ⇒ Calc′ � S.
First, we prove thatCalc′′ �V S ⇒ Calc′ � S. For the proof, we use induction

on the number of(E ⊃ D →) type applications inV . The base case is obvious. The
inductive case is considered as follows. We take an(E ⊃ D →) application inV above
which there are no other such applications and apply the previous lemma, reducing the
number of(E ⊃ D →) applications. It remains to apply the inductive hypothesis.

We have:Calc �V S ⇒ Calc′′ � S ⇒ Calc′ � S.

5. α-primary sequents

Using the results of the previous section, we will expand the class of primary sequents.
Due to Lemma 4.2, as far as the sequent derivability is concerned,LK ′

0 andLJ ′
0 can

be freely interchanged withLK0 andLJ0, respectively.
A sequent of the shape�,(E ⊃ D)i,¬� → �, i � 0, is calledα-primary. Here

(E ⊃ D)i is the empty set or a multiset:E1 ⊃ D1,E2 ⊃ D2, . . . ,Em ⊃ Dm, whereEi

are atomic andDi arbitrary formulas;� is the empty set or a multiset consisting of
atomic formulas andEi 	∈ �; � is the empty set or an atomic formula.

If � = ∅ or � ∩ � 	= ∅, then anα-primary sequentS = �,(E ⊃ D)i,¬� → � is
derivable inLJ0 iff it is derivable inLK0.

If � = E, then only(¬ →) is applicable toS in LJ ′
0. But then� is dropped, and

LJ ′
0 � �,(E ⊃ D)i,¬� → � iff LJ ′

0 � �,(E ⊃ D)i,¬� →. The last sequent, by
the Glivenko theorem, is derivable inLJ0 iff it is derivable in LK0. We have that
LJ0 � �,(E ⊃ D)i,¬� → � iff LK0 � �,(E ⊃ D)i,¬� →.

A sequentS is calledα-primarily reducible iff there exists anLJ ′
0 derivation tree

V (S) such that only invertible rules ofLJ ′
0 are applied in it and each leaf of which is

an axiom, anα-primary sequent, or a sequent with the empty succedent. Such a tree is
called anα-primary reduction tree.

Suppose thateach leaf of anα-primary reduction treeV (S) is of the shape�,D →
D,� (D any formula) or a sequent with the empty succedent. Then each such a leaf
is derivable inLJ ′

0 iff it is derivable inLK′
0. Note also that the invertible rules ofLJ ′

0
coincide with the corresponding ones ofLK ′

0 for sequents with at most one formula
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in the succedent. Due to the fact that all rules ofLK ′
0 are invertible, rule application

order has no impact on derivability inLK0. Therefore,LJ0 � S (LJ ′
0 � S) iff LK0 � S

(LK′
0 � S).

If an α-primary reduction treeV (S) has a non-axiom leaf with some atomic for-
mulaE in the succedent, thenE must be dropped before we can consider the leaf in
LK′

0. Therefore, in this case, though we use only invertible rules, we cannot consider
S directly in LK0 in order to check if it is derivable inLJ0. We first construct the re-
duction tree, then make succedents of thenon-axiom leaves empty, and then consider
the non-axiom leaves inLK0 (or LK′

0).

5.1. Some expansion of the class ofα-primarily reducible sequents

In this section, we present some means which allows us to expand the class ofα-
reducible sequents. We make use of ideas of [3] and [4].

F1 = (B ∧ C) ⊃ D andF ′
1 = α ⊃ (δ ⊃ D). Hereα ∈ {B,C} andδ ∈ {B,C} \ {α}.

F2 = (B ∨ C) ⊃ D andF ′
2 = (B ⊃ D) ∧ (C ⊃ D).

Convince yourself that the sequentsF1 → F ′
1, F ′

1 → F1 andF2 → F ′
2, andF ′

2 → F2
are derivable in bothLK0 andLJ0.

The rules

α ⊃ (δ ⊃ D),� → �

(B ∧ C) ⊃ D,� → �
(∧ ⊃→) and

(B ⊃ D), (C ⊃ D),� → �

(B ∨ C) ⊃ D,� → �
(∨ ⊃→)

are admissible and invertible inLJ0 andLK0. To see this, use cut and the fact that the
above four sequents are derivable inLJ0 andLK0. It follows from this and Lemma 4.2
that these rules are admissible also inLJ ′

0 andLK′
0.

With the help of these rules, we get that, e.g., the sequent

(D ∧ E) ⊃ B → A

(E andA atomic) isα-reducible:

E ⊃ (D ⊃ B) → A

(D ∧ E) ⊃ B → A
(∧ ⊃→)

and the premise isα-primary.
Thus, let us redefine the notion ofα-primarily reducible sequents. A sequentS is

calledα-primarily reducible iff there exists anLJ ′
0 ∪ {(∧ ⊃→), (∨ ⊃→)} derivation

treeV (S) such that only invertible rules ofLJ ′
0∪{(∧ ⊃→), (∨ ⊃→)} are applied in it

and each leaf of which is an axiom, anα-primary sequent, or a sequent with the empty
succedent. Such a tree is called anα-primary reduction tree.

6. Definition of a subclass of α-primarily reducible sequents

Now, let us define a subclass ofα-reducible sequents by introducing some restriction
on syntax of sequents.

First, we give some preparatory definitions. Indicators “formulaF is negative” are:
1) F occurs in the antecedent and 2)F occurs in the scope of¬ or in the left scope
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of ⊃. An occurrence of a formula in a sequentS is called positive inS iff 1) it is in
its succedent and there are no indicators showing that it is negative or 2) the number
of indicators indicating thatF is negative is even. Otherwise the occurrence is called
negative inS. Let us consider an example:

S = ¬¬¬C → ¬B.

C is positive andB is negative inS. ¬B is positive and¬C is negative. And so on.
Suppose thatG is a subformula ofF andF is subformula of itself only in a se-

quentS. The number of alternations positive-negative (or negative-positive) obtained
by “going into the depth ofF ” until the occurrence ofG is reached is called the degree
of positiveness or negativeness of the occurrence ofG in S. E.g., let us take the above
example.B is a subformula of¬B and the latter formula is a subformula of itself only
in S. ¬B is positive andB is negative inS. We have one alternation and conclude that
the occurrence ofB is negative of the first degree inS. In the same way,¬B is positive
of the zeroth degree andC is positive of the third degree inS.

Now we are ready to define a classC of α-reducible sequents. A sequentS belongs
to C iff

1) it has no zeroth degree negative⊃ in the left scope of which¬ or ⊃ occurs. I.e.,
there are no situations like this:(A ⊃ B) ⊃ C → or ¬B ⊃ C →;

2) it has no zeroth degree positive⊃ in the left scope of which a first degree negative
⊃ occurs in the left scope of which⊃ or ¬ occurs. I.e., there are no situations like this:
→ ((A ⊃ B) ⊃ C) ⊃ D or → (¬B ⊃ C) ⊃ D;

3) it has no positive∨ of the zeroth degree.
It is easy to see that if a sequent belongs toC, then it isα-reducible. However, not

everyα-reducible sequent belongs toC. Such is, e.g., the sequent

E ⊃ ((D ⊃ B) ⊃ C) → A

(E andA atomic).
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REZIUMĖ

R. Alonderis. Propozicin˙es intuicionistinės logikos sekvencij↪u ↪
irodymo paieška naudojant klasikin˙es

logikos skaičiavim↪a

Straipsnyje yra apibr˙ežtos primariškai ir alfa-primariškai redukuojam↪u propozicinės intuicionistinės
logikos sekvencij↪u klasės. Parodoma kaip nustatyti ši↪u sekvencij↪u ↪

irodomum↪a intuicionistinės logikos
skaičiavime naudojant efektyvesn↪i klasikinės logikos skaiˇciavim↪a.

Raktiniai žodžiai: Glivenko teorema, klasikinis propozicinis sekvencinis skaiˇciavimas, intuicionistinis
propozicinis sekvencinis skaiˇciavimas.


