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Abstract. In the paper, we define some classes of sequélegropositional intuitionistic logic. These
are classes of primarily ang-primarily reducible sequents. Then we show how derivability of these se-

quents in a propositional intuitiostic logic sequent calculusJy can be checked by means of a proposi-
tional classical logic sequent calcullg.
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1. Introduction

In the paper, we define some classes afusmits of the proposdnal intuitionistic
logic. These are classes of primarily aaeprimarily reducible sequents. Then we
show how derivability of these sequents iprapositional intuitiorstic logic sequent
calculusL Jo can be checked by means of a propasiéil classical logic sequent cal-
culus LKp. The paper is organized as follows. First, we introduce the calckly

andL Jp. Then, we define the class of primarily reducible sequents. Further we modify
LKgandLJg and introduce the class afprimarily reducible sequents. In the end, we
define a subclass ofreducible sequents by introducing some restriction on syntax of
sequents.

2. Calculi LKgand LJg

CalculusL K is a variant of the classical propositional Gentzen-like sequent calculus.
Itis defined as follows:

1. Axioms:T', E — E, A.

2. Rules:
A,B, ' > A '->AA; T —> B, A
——— (A >), (= A,
AANB,I'—> A I'>AAB,A
A, I'—>A;B,T - A I'—>A,B,A
(v —), — (= V),

AV B, T'—= A I'-AVBA
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- A A INA—> A
—— (7 —>), —— (=),
I'-A—> A I'—>—-A A
- A A;B, ' > A I'A— B, A
O—)y, —/ (—=D).
ADB,I'—> A ' ->ADB,A

Here: E denotes an atomic formulas and B denote arbitrary formulad; and A
denote finite, possibly empty, multisets of formulas.

LJy is a variant of the intuitionistic propositional Gentzen-like sequent calculus. It
is obtained fromL Ky by the following changes. There is at most one formula in the
succedent. Thugy = @ in the succedent rules. Also.

Rule (— V) is replaced by the following one:

I'-AorB

—— (= V).
I'-AvVvEB

Rule (— —) is replaced by
r-A—A
Irh-A— A

(= —).

Rule (OD—) is replaced by

I'ADB— A; B, ' = A
INADB— A

We introduce here some notation. We denote a derivation tréé dayd the height
of the derivation tree by (V). The height of a derivation tree is reckoned to be the
length of the longest branch in it. The length of a branch is measured by the number
of rule applications in it.

Now we present some well known propertiesIc€y and L Jp. All LKy rules are
strongly invertible. Il.e., if the conclusion is derivable, then also isethel premise;
moreover, there exists a derivation of the/each premise such that its height is less or
equal than that one of the conclusion.

All LJg rules, except— V), (——), and(D>—), are strongly invertible(>—) is
strongly invertible with respect to the right premise. It€/,T", A > B — A implies
the existence of’ such that-"' T, B — A andh(V') < h(V).

The following properties hold for botth Ko and L Jo. Any sequent of the shape
I', D — D, A is derivable O any formula). The rules of weakening and contraction
are strongly admissible. The rule of cut is admissible. The calculi are correct and com-
plete.

We will freely apply these properties further.

(O—).

3. Primary sequents

Glivenko proved in [1] that a formula beginning with-" is derivable in a classi-
cal propositional logic calculus iff it is deritde in its intuitionistic counterpart. Due
to rule invertibility, a sequenfdy,..., A, — is derivable inLKj iff the sequent
— =(A1 A ... A Ay) is derivable inLKg. According to the Glivenko theorem, the
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last sequent is derivable Ky iff it is derivable in L Jo. Thus, we have that a sequent
with the empty succedent is derivable in a classicappsitional logic calculus iff it
is derivable in its intuitionistic counterpart. See also [2].

A sequent of the shadé, —I' — O is called primary. Herél is the empty set or a
multiset consisting of atomic formulas" is the empty set or a multiset of formulas
each of which is preceded by’; © is the empty set or an atomic formula.

If ® =0 or I1 NG # @, then a primary sequerst=I1, - — @ is derivable in
LK iffitis derivable in L Jy. If ® = E, then only(— —) is applicable taS. But then
® is dropped, and.Jo - I, =" — O iff LJg+ I1,=I" —. The last sequent, by the
Glivenko theorem, is derivable ih Jy iff it is derivable in LKg. Thus, in this case,
we have thatLJo +IT,—I' — @ iff LKg+ IT,—=I' —. E.g., instead of considering
——=A — A in LJy, we can consider—A — in LK (A atomic).

We denote a derivation tree with a sequgmit the bottom by (S).

A sequentS is called primarily reducible iff there exists anJp derivation tree
V(S) such that only invertible rules of.Jy are applied in it (i.e., any rule except
(= =), (=), and(— V)) and each leaf of which is an axiom, a primary sequent,
or a sequent with the empty succedent. Such a tree is called a primary reduction tree.
E.g., any sequent of the shape> —A is primarily reducible: applying— —) to this
sequent, we get the primary reduction tree.

Suppose thatach leaf of a primary reduction tré&(S) is of the shapd™, D —

D, A (D any formula) or a sequent with the empty succedent. Then each such a leaf
is derivable inL Jg iff it is derivable in L Kp. Note also that the invertible rules b/
coincide with the corresponding ones oK for sequents with at most one formula

in the succedent. Due to the fact that all ruled.d are invertible, rule application
order has no impact on derivability bKy. ThereforeLJo+ S iff LKgt S.

If a primary reduction tre& (S) has a non-axiom leaf with an atomin the succe-
dent, thenE must be removed before we can consider the ledf Afy. Therefore, in
this case, though we use only invertible rules, we cannot conSidinectly in L Kg
in order to check if it is derivable i Jo. We construct the reduction tree first, then
replace eachon-axiom leaf of the shagé, —I' — E by IT, =" —, and then consider
the non-axiom leaves ih K.

4. Moadifications of LKg and LJg

In this section, we use the ideas of [3] and [4]. We mention also [5] and [6]. Let
LK( and LJy be the calculi obtained fromi Ko and L Jo, respectively, by making
the restriction thatA in the explicit A > B in the rule(>—) is not atomic and by
introducing a new derivation rule:

E,B,I' > A

E.EDB T —

Here E is atomic. This rule corresponds to tte—) rule with the exception that the
left premiseE, " — E, A (calculusLKp) is dropped. Note thatE >—) is strongly

invertible becausé>—) is strongly invertible with respect to the right premise in both
LKy andLJo.

A (E D>—).
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LK{=LK\ULKoandLJ§=LJ§U LJo.
By, e.g.,(— A A B), we denote an application ¢f> A) with A A B as the main
formula, etc.

LEMMA 4.1. Let Calc € {LK{,LJ{} and Calc FV S, where S is any se-
guent. Suppose further that the first rule appliedVincounting from the bottom is
(E D D —), whereE is atomic, and there are no other applications of this shape in
V. Then there existg’ such thatCalc -¥" S and V' is free of rule applications of the
type(E D D —) (E any atomic,D arbitrary).

LEMMA 4.2. LetCalc € {LKo, LJo} and S be an arbitrary sequentCalc + S iff
Calc' - S.

Proof. 1) Calc’' - S = Calc+ S. This is obvious.

2) Calc+" § = Calc'F 8.

First, we prove thaCalc” Y S = Calc’ - S. For the proof, we use induction
on the number of E > D —) type applications irV. The base case is obvious. The
inductive case is considered as follows. We takéam D —) application inV above
which there are no other such applications and apply the previous lemma, reducing the
number of(E > D —) applications. It remains to apply the inductive hypothesis.

We have:CalctY S = Calc” - S = Calc' F S.

5. a-primary sequents

Using the results of the previous section, we will expand the class of primary sequents.
Due to Lemma 4.2, as far as the sequent derivability is concefn€f.and L J; can
be freely interchanged with Kq and L Jg, respectively.

A sequent of the shapd, (E D D);,—-I" — ©, i > 0, is calleda-primary. Here
(E D D); is the empty set or a multiseE, D D1, E2 D Do, ..., E,, D D,,, whereE;
are atomic andD; arbitrary formulas]I is the empty set or a multiset consisting of
atomic formulas and:; ¢ IT; ® is the empty set or an atomic formula.

If ®=¢ or 1N G # @, then anx-primary sequen§ =11, (E D D);,-I' - ® is
derivable inL Jy iff it is derivable in LK.

If ® = E, then only(— —) is applicable taS in LJ). But then® is dropped, and
LJg+T1,(E D D);,—I' » @ iff LJj+TI,(E D> D);,—I' —. The last sequent, by
the Glivenko theorem, is derivable ihJj iff it is derivable in LKy. We have that
LJoFT1,(E D D);,—' > @ iff LKg+I1, (E D D);, = —.

A sequents is callede-primarily reducible iff there exists ahJ) derivation tree
V(S) such that only invertible rules afJ; are applied in it and each leaf of which is
an axiom, arme-primary sequent, or a sequent with the empty succedent. Such a tree is
called anx-primary reduction tree.

Suppose thatach leaf of am-primary reduction tre& (S) is of the shap&, D —
D, A (D any formula) or a sequent with the empty succedent. Then each such a leaf
is derivable inL J; iff it is derivable in LK. Note also that the invertible rules b7,
coincide with the corresponding ones bk for sequents with at most one formula
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in the succedent. Due to the fact that all rulesL&f;, are invertible, rule application
order has no impact on derivability inKo. ThereforeL Jo = S (LJjF S) iff LKoF- S
(LK) S).

If an a-primary reduction tre&/ (S) has a non-axiom leaf with some atomic for-
mula E in the succedent, theA must be dropped before we can consider the leaf in
LK. Therefore, in this case, though we use only invertible rules, we cannot consider
S directly in LK in order to check if it is derivable if Jy. We first construct the re-
duction tree, then make succedents ofriba-axiom leaves empty, and then consider
the non-axiom leaves ih K (or LKp).

5.1. Some expansion of the classtgbrimarily reducible sequents

In this section, we present some means which allows us to expand the class of
reducible sequents. We make use of ideas of [3] and [4].
F1=(BAC)DDandF]=aD> (5§ D D). Herea € {B,C} ands € {B, C} \ {a}.
F,=(BVvC)D>DandF,=(B>D)A(CDD).
Convince yourself that the sequeiits— F;, F; — F1andF, — F;, andF, — F»
are derivable in botl. Ko and L Jp.
The rules

«ad>@B>D), [ —>A (B> D),(C>D),I > A
(AD>—) and (VvDoO—)
(BAC)DD, T — A

(BvC)DD, T - A
are admissible and invertible ihJy and L K. To see this, use cut and the fact that the
above four sequents are derivabld.iy and L K. It follows from this and Lemma 4.2
that these rules are admissible alsd.if) and LK.

With the help of these rules, we get that, e.g., the sequent

(DAE)DB— A

(E and A atomic) isa-reducible:

ES>D((DDB)— A
(AD—)
(DNE)YDB— A

and the premise ig-primary.

Thus, let us redefine the notion efprimarily reducible sequents. A sequéhts
calledx-primarily reducible iff there exists anJjy U {(A D—), (v D—)} derivation
treeV (S) such that only invertible rules dfJyU {(A D—), (v D—)} are applied in it
and each leaf of which is an axiom, arprimary sequent, or a sequent with the empty
succedent. Such a tree is calledeaprimary reduction tree.

6. Definition of a subclass of «-primarily reducible sequents

Now, let us define a subclass @freducible sequents by introducing some restriction
on syntax of sequents.

First, we give some preparatory definitions. Indicators “fornttlia negative” are:
1) F occurs in the antecedent and 2)occurs in the scope of or in the left scope
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of D. An occurrence of a formula in a sequehts called positive inS iff 1) it is in

its succedent and there are no indicators showing that it is negative or 2) the number
of indicators indicating thaf' is negative is even. Otherwise the occurrence is called
negative inS. Let us consider an example:

C is positive andB is negative inS. —B is positive and-C is negative. And so on.

Suppose that is a subformula ofF and F is subformula of itself only in a se-
guentS. The number of alternations positive-negative (or negative-positive) obtained
by “going into the depth of” until the occurrence of; is reached is called the degree
of positiveness or negativeness of the occurrend@ iof S. E.g., let us take the above
example.B is a subformula of=B and the latter formula is a subformula of itself only
in S. —B is positive andB is negative inS. We have one alternation and conclude that
the occurrence aB is negative of the first degree i In the same way B is positive
of the zeroth degree ard is positive of the third degree ifi.

Now we are ready to define a cla8®f «-reducible sequents. A sequehbelongs
to € iff

1) it has no zeroth degree negativen the left scope of which- or > occurs. l.e.,
there are no situations like this’A > B) D C — or—=B D> C —;

2) it has no zeroth degree positivein the left scope of which a first degree negative
D occurs in the left scope of which or — occurs. l.e., there are no situations like this:
—-((AD>DB)DC)>DDor— (—=B>C)DD;

3) it has no positiver of the zeroth degree.

It is easy to see that if a sequent belongg€tdhen it is¢-reducible. However, not
everya-reducible sequent belongsdo Such is, e.g., the sequent

E>(DD>B)DC)— A
(E and A atomic).
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REZIUME

R. Alonderis. Propozicies intuicionistines logikos sekvenaijjirodymo paieSka naudojant klasikies
logikos skaciavima

Straipsnyje yra apil@ztos primariSkai ir alfa-primariSkai redukuojanpropozicires intuicionisties
logikos sekvencij klags. Parodoma kaip nustatytuSsekvencij irodomuna intuicionistires logikos
skaciavime naudojant efektyvegklasikinés logikos skaiiavima.

Raktiniai Zodziai Glivenko teorema, klasikinis propozicinis sekvencinis skaiimas, intuicionistinis
propozicinis sekvencinis skaavimas.



