
Liet. mat. rink. LMD darbai, 48/49, 2008, 269–274

Restrictions for loop-check in sequent calculus
for temporal logic

Adomas BIRŠTUNAS (VU)
e-mail: adomas.birstunas@mif.vu.lt

Abstract. In this paper, we present sequent calculus for linear temporal logic. This sequent calculus uses
efficient loop-check techinque. We prove that we can use not all but only several special sequents from
the derivation tree for the loop-check. We use indexes to discover these special sequents in the sequent
calculus. These restrictions let us to get efficient decision procedure based on introduced sequent calculus.

Keywords: sequent calculus, temporal logic, efficient loop-check.

1. Introduction

Usual sequent calculi with cut rule are practically unusable in automated environment.
So, sequent calculi with analytic cut, or infinitary rule, or some kind of the loop-check
must be used to get a decision procedure. Unfortunately, such a sequent calculi are
inefficient and need additional modifications to get more or less usable decision pro-
cedure. One of the possibilities is constructing sequent calculi with an efficient loop-
check (as it is done for some modal logics in [3]), or (if it is only possible) loop-check
free calculi (as it is done forKD45 logic in [1]). The same situation holds for linear
temporal logic.

There is known sequent calculus for linear temporal logic which is cut free and
invariant free sequent calculus ([2]), but we need to use loop-check to get decidability
and it usesuntil temporal operator. In [2], you can also find a survey about other
known calculi for linear temporal logic. In this paper, we suggest some restrictions to
the loop-check for linear temporal logic. We concentrate on the linear temporal logic
with 2 modal operators:allways (� ) andnext (◦). Restrictions allows us to use only
special sequents in a loop-check. So, we got a sequent calculi with an efficient loop
check.

There is known sequent calculus for linear temporal logic, which uses loop-check.
Sequent calculus has logical rules and the following rules:

�→�,A �→�,◦�A
�→�,�A

(→ � ) �→�
◦�→◦�

(◦),

A,◦�A,�→�
�A,�→�

(� →) �→�
�,�′→�,�′ (Weak).

DEFINITION 1. We say that sequentS is an ancestor of the sequentS′ in the deriva-
tion tree, if there exist sequence of the sequentsS1 = S,S2, . . . ,Sn = S′ that for every



270 A. Birštunas

i = 1,2, . . . (n − 1), sequentSi is a conclusion and sequentSi+1 is a premise of some
rule application.

DEFINITION 2. We say, that we have a loopS � S′ in the sequent derivation tree
if the following conditions are true:

– sequentS is an ancestor of the sequentS′;
– S′ may be obtained fromS by rule(Weak) application: S

S ′ (Weak).

DEFINITION 3. We say, that sequentS′ is a loop-axiom if there exists sequentS
satisfying the following conditions:

– S � S′ is a loop in the derivation tree;
– between sequentsS andS′, there exists such a rule(→ � ) application, that its

right premise is sequentS′ ancestor.

DEFINITION 4. Sequent calculus for linear temporal logic with inference rules
(→ ∨), (∨ →), (→ &), (& →), (→ ¬), (¬ →), (Weak), (→ � ), (� →), (◦), with
a loop-axiom and with an axiom�,φ → �,φ we call sequent calculusG1LT L.

2. Restrictions for the loop-check

According sequent calculusG1LT L, we can make a decision procedure (similar to
the decision procedure described in [5]). Unfortunatelly, this procedure must use loop-
check technique to detect non-derivable sequent, or to detect loop-axiom. In other
words, we have to deal with two types of the loops. One is a loop-axiom (Definition 3)
which may lead initial sequent to be derivable. For this type of the loop we use term
loop-axiom. Other is a simple loop, which is not a loop-axiom, and leads initial sequent
to be non derivable. For this type of the loop we use term ’nonderivable’ loop. We use
term loop to denote both types of the loop. All restrictions for loop check are applied
for both types of the loop.

Now we introduce sequent calculusG2LT L which uses only invertable or semi
invertable rules. To get such a sequent calculus, we use primary sequents.

DEFINITION 5. SequentS is primary if S has the shape�,◦� → �,◦� and�,�

contains only propositional variables,� ∩ � = ∅.

DEFINITION 6. Sequent calculus for linear temporal logic with inference rules
(→ ∨), (∨ →), (→ &), (& →), (→ ¬), (¬ →), (→ � ), (� →), (◦p), with a loop-
axiom and with an axiom�,φ → �,φ we call sequent calculusG2LT L.

� → �

�,◦� → �,◦�
(◦p),

�,� contains only propositional variables and� ∩ � = ∅.
Simple speaking, rule(◦p) may be applied only for primary sequent.

LEMMA 1. Sequent S is derivable in sequent calculus G1LT L if and only if se-
quent S is derivable in sequent calculus G2LT L.



Restrictions for loop-check in sequent calculus for temporal logic 271

The proof is omitted because of the lack of the space.
Now we introduce sequent calculusG3LT L wich uses loop-check only for se-

quents those are some premises of the rule(◦p) application only. This modification
reduces the number of the checked sequents in the derivation tree.

DEFINITION 7. LoopS � S′ is a◦-loop if there exist primary sequentsS1,S
′
1 in

the derivation tree, andS1 is obtained from the sequentS, andS′
1 is obtained from the

sequentS′ by rule(◦p) applications (i.e.,S
S1

(◦p), S ′
S ′

1
(◦p)).

DEFINITION 8. We say, that sequentS′ is a◦-loop-axiom if there exists sequentS
satisfying the following conditions:

– S � S′ is a◦-loop in the derivation tree;
– S � S′ is a loop-axiom.

DEFINITION 9. Sequent calculus for linear temporal logic with inference rules
(→ ∨), (∨ →), (→ &), (& →), (→ ¬), (¬ →), (→ � ), (� →), (◦p), with a◦-loop-
axiom and with an axiom�,φ → �,φ we call sequent calculusG3LT L.

LEMMA 2. Sequent S is derivable in sequent calculus G2LT L if and only if se-
quent S is derivable in sequent calculus G3LT L.

The proof is omitted because of the lack of the space.
Now we prove some lemmas to introduce main restrictions to the loop-check used.

First, we define subformulas and prove some features for them.

DEFINITION 10. We writeF ⊆sf G to define thatF is subformula ofG.
We use extended term subformula: if we have formula of the shape�F , then we

say, that formula◦�F is also subformula of�F (◦�F ⊆sf �F ).

DEFINITION 11. FormulaF is proper subformula of G, if F is subformula ofG
and formulaG length is greater then formulaF length.

We writeF ⊂sf G to define thatF is proper subformula ofG.

DEFINITION 12. FormulaF in sequentS is ground if for ever formulaG ∈ S,
formulaF is not a proper subformula ofG (F 
⊂sf G).

LEMMA 3. If F ⊂sf G, and G ⊆sf H , then F ⊂sf H or G = ◦H = ◦F = ◦�A.

Proof. If G ⊆sf H , then a)G ⊂sf H , or b)G = H , or c)G = ◦H = ◦�A.
In the cases a) and b), it is evident, thatF ⊂sf H . In the case c), we just have

F ⊆sf H . If H lenght greater thenF length, thenF ⊂sf H . If H andF lengths are
equal thenF = H andG = ◦H = ◦F = ◦�A. If F lenght is greater thenH length,
thenF = ◦H , andG = ◦H = F – contradiction forF ⊂sf G.



272 A. Birštunas

LEMMA 4. If S � S′ is a ◦-loop then, in any sequent T ∈ S � S′, any ground
formula F ∈ T has the shape �A or ◦�A.

Proof. SinceS � S′ is a◦-loop, there exists such a sequentS′
1, thatS′

1 is obtained

from the sequentS′ by rule(◦p) application (S
′

S ′
1
(◦p)).

There exists ground formulaG ∈ S, thatF ⊆sf G. G ∈ S′ and◦G ∈ S′
1, because

S � S′ is a◦-loop. There exists ground formulaH ∈ T , that◦G ⊆sf H .
We have, thatF 
⊂sf H (becauseF is ground formula inT ) and F ⊆sf H

(F ⊆sf G, G ⊂sf ◦G, ◦G ⊆sf H ). Therefore,F = ◦H = ◦�A (this case satisfies
lemma) orF = H .

If F = H , thenG ⊂sf ◦G and◦G ⊆sf F (= H). According to Lemma 3,G ⊂sf F ,
or ◦G = ◦F = ◦�A, andF = �A (satisfies lemma).

SinceG ⊂sf F andF ⊆sf G, then, according to Lemma 3,G ⊂sf G (we get a
contradiction), orF = ◦G = ◦�A (satisfies lemma).

LEMMA 5. Suppose, that S � S′ is a ◦-loop in the derivation tree constructed
according sequent calculus G3LT L. If F is ground formula in sequent S or in se-
quent S′, then formula F or ◦F is ground in all sequents in a ◦-loop S � S′.

Proof. Every rule premise contains only subformulas of the rule conclusion.
Case 1) Ground formulaF ∈ S. ThenF ∈ S′, becauseS � S′ is a◦-loop. Suppose,

that formulaF is not ground on some sequentT inside the◦-loop S � S′. So, there
exist ground formulaG ∈ T , thatF ⊂sf G.

There exist ground formulaH ∈ S, that G ⊆sf H . According to Lemma 3,
F ⊂sf H ∈ S (contradiction forF being ground inS), or G = ◦F andG is ground in
T (satisfies lemma). We got that ifF is ground in sequentS, thenF or ◦F is ground
in every sequent in a◦-loopS � S′.

Case 2) Ground formulaF ∈ S′. Suppose, that formulaF is not ground on some se-
quentT inside the◦-loopS � S′. So, there exist ground formulaG ∈ T , thatF ⊂sf G.

There exist ground formulaH ∈ S, that G ⊆sf H . According to Lemma 3,
F ⊂sf H ∈ S or F = H (G = ◦H = ◦F ). SinceS � S′ is a◦-loop,H ∈ S′. Formula
F is ground inS′. Therefore,F 
⊂sf H , andF = H .

If F = H , thenG is ground inT andG ⊆sf F (= H). So,G = F or G = ◦F and is
ground inT . We got that ifF is ground in sequentS′, thenF of ◦F is ground in every
sequent in a◦-loopS � S′.

COROLLARY 1. If we have derivation tree satisfying the following items:
– we have rule application with conclusion T and premise T ′,
– there exist ground formula �F (or ◦�F ) in the sequent T ,
– formula �F or formula ◦�F is not a ground in sequent T ′.
Then Lemma 5 says, that sequent T is not inside any ◦-loop S � S′.

Proof goes straightforward from Lemma 4 and Lemma 5.
In other words, if some ground formula was deleted during some rule application

(in bottom-up direction), then we do not need to check any sequent below that rule



Restrictions for loop-check in sequent calculus for temporal logic 273

application in order to catch a loop. The main problem is to identify such a situation,
because every time we delete some ground formula, at least one new ground formula
appears.

The only rule (in calculusG3LT L), which may satify above conditions, is(→ � ),
then we take left premise (nonmodal case). So, we can add special indexes for modal
operator� to catch such a situation.

We add different upper-indexes for everydifferent subformula�F in the sequent
S. The bottom-index will be a set of indexes. The bottom-index is defined according
to the following rule: if� i

UF ⊂sf � j
V G in sequentS, thenV ⊂ U andj ∈ U .

It means that every ground formula�F (or ◦�F ) in any sequentS have empty set
as its bottom index:� i

∅F (or ◦� i
∅F ).

Indexes are some kind of the histories, because they store information abaut applied
rules (efficient calculi with used histories may be found in [3,4]).

DEFINITION 13. Sequent calculus for linear temporal logic with inference rules
(→ ∨), (∨ →), (→ &), (& →), (→ ¬), (¬ →), (→ � ∗), (� →), (◦∗

p), with a
◦-loop-axiom and with an axiom�,φ → �,φ we call sequent calculusG4LT L.

�∗ δ→ �∗,A∗ � → �,◦� i
UA

� → �,� i
UA

(→ � ∗) �
◦→ �

�,◦� → �,◦�
(◦∗

p).

Here,�,� contains only propositional variables,� ∩ � = ∅. δ ∈ {∅,+} and
– if there is no formula� i

T G (or ◦� i
T G ) ∈ � ∪�, thenδ = +; and�∗,�∗,A∗ are

the same as�,�,A, only indexi is fully removed from any subformula,
– if there is some formula� i

T G (or ◦� i
T G ) ∈ � ∪ �, thenδ = ∅; and�∗,�∗,A∗

are exactly the same as�,�,A.
Simple speaking, if we got a sequent marked with+, we know, that some ground

formula was just deleted and loop cannot appear here. If we delete some ground for-
mula (we also delete some indexi), we must get some new ground formula. These new
ground formulas will be formulas containing modalized subformula with emptyset as
its bottom index.

LEMMA 6. Sequent S is derivable in sequent calculus G3LT L if and only if se-
quent S is derivable in sequent calculus G4LT L.

The proof is straightforward from Corollary 1.
So, we get efficient decision procedure for linear temporal logic if we use sequent

calculusG4LT L with restricted loop-check (for both loop types), which:
– checks only sequents marked by◦,
– checks only till the first sequent marked with+ (in top-down direction).

3. Conclusion

In this paper, we prove that some restrictions for loop-check for linear temporal logic
may be applied without loosing derivability. We prove that any ground formula is



274 A. Birštunas

modalized and stable in any loop. These restrictions let us to construct sequent calculus
with efficient loop-check, because (during loop-check) only several special marked
sequents must be checked. The same restriction for ground formulas may by applied
for other modal logics (first of all for branching time logic).

References

1. A. Birstunas, Efficient loop-check for KD45 logic,Lith. Math. J., 46(1), 1–12 (2006).
2. J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro, F. Orejas, A cut-free and invariant-free sequent

calculus for PLTL,Lecture Notes in Computer Science, 4646, 481–495 (2007).
3. A. Heuerding, M. Seyfried, and H. Zimmermann, Efficient loop-check for backward proof search in

some non-classical propositional logics, in: P. Miglioli, U. Moscato, D. Mundici, M. Ornaghi (Eds.),
Tableaux 96, LNCS, 1071, 210–225 (1996).

4. M. Mouri, Constructing counter-models for modal logic K4 from refutation trees,Bull. Section of
Logic, 31(2), 81–90 (2002).

5. N. Nide and S. Takata, Deducton systems for BDI logic using sequent calculus, in:Proc. AAMAS’02
(2002), pp. 928–935.

REZIUMĖ

A. Birštunas. Apribojimai cikl ↪u radimui sekvenciniame laiko logikos skaiˇciavime

Darbe pateiktas sekvencinis skaiˇciavimas tiesinei laiko logikai, kuris naudoja efektyv↪u cikl ↪u radimo me-
chanizm↪a. Darbe↪irodyta, kad atramin˙es formulės cikluose visada yra modalizuotos ir nekinta. Šie apribo-
jimai leidžia mums cikl↪u paieškoje apsiriboti keliomis specialiai pažym˙etomis sekvencijomis. Analogiški
apribojimai gali buti pritaikyti ir kitoms modalumo logikoms (vis↪u pirma skaidaus laiko logikai).

Raktiniai žodžiai: sekvencinis skaiˇciavimas, laiko logika, efektyvus cikl↪u radimas.


