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Abstract. In this paper, we present sequent calculus for linear temporal logic. This sequent calculus uses
efficient loop-check techinque. We prove that we cam mist all but only several special sequents from

the derivation tree for the loop-check. We use indexes to discover these special sequents in the sequent
calculus. These restrictions let us to get efficieatidion procedure based on introduced sequent calculus.
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1. Introduction

Usual sequent calculi with cut rule are practically unusable in automated environment.
So, sequent calculi with analytic cut, or infinitary rule, or some kind of the loop-check
must be used to get a decision procedure. Unfortunately, such a sequent calculi are
inefficient and need additional modifications to get more or less usable decision pro-
cedure. One of the possibilities is construgtsequent calculi with an efficient loop-
check (as it is done for some modal logics in [3]), or (if it is only possible) loop-check
free calculi (as it is done foK D45 logic in [1]). The same situation holds for linear
temporal logic.

There is known sequent calculus for linear temporal logic which is cut free and
invariant free sequent calculus ([2]), but we need to use loop-check to get decidability
and it usesuntil temporal operator. In [2], you can also find a survey about other
known calculi for linear temporal logic. In this paper, we suggest some restrictions to
the loop-check for linear temporal logic. We concentrate on the linear temporal logic
with 2 modal operatorsallways (O) andnext (o). Restrictions allows us to use only
special sequents in a loop-check. So, we got a sequent calculi with an efficient loop
check.

There is known sequent calculus for linear temporal logic, which uses loop-check.
Sequent calculus has logical rules and the following rules:

r>AA T—>AoA r>A
TSA A (=0) sT=oa (0
AoATT—>A r>A
Harsx @) rroan  (Weak).

DEFINITION 1. We say that sequeStis an ancestor of the sequeitin the deriva-
tion tree, if there exist sequence of the sequénts S, So, ..., S, = S’ that for every
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i=1,2,...(n — 1), sequent; is a conclusion and sequesit, ; is a premise of some
rule application.

DEFINITION 2. We say, that we have a lodp~ S’ in the sequent derivation tree
if the following conditions are true:

— sequens is an ancestor of the sequetit

— 8 may be obtained fron§ by rule (Weak) application:% (Weak).

DEFINITION 3. We say, that sequesst is aloop-axiom if there exists sequerft
satisfying the following conditions:

—§~» S is aloop in the derivation tree;

— between sequentsand §’, there exists such a rule> 0O) application, that its
right premise is sequeist ancestor.

DEFINITION 4. Sequent calculus for linear temporal logic with inference rules
(= V), (V=), (= &), (& =), (= ), (=), Weak), (— 0), (O =), (o), with
a loop-axiom and with an axiom, ¢ — A, ¢ we call sequent calculus; LT L.

2. Restrictions for the loop-check

According sequent calculus, LT L, we can make a decision procedure (similar to
the decision procedure described in [5]). Unfortunatelly, this procedure must use loop-
check technique to detect non-derivable sequent, or to detect loop-axiom. In other
words, we have to deal with two types of the loops. One is a loop-axiom (Definition 3)
which may lead initial sequent to be derivable. For this type of the loop we use term
loop-axiom. Other is a simple loop, which is not a loop-axiom, and leads initial sequent
to be non derivable. For this type of the loop we use term 'nonderivable’ loop. We use
term loop to denote both types of the loop. All restrictions for loop check are applied
for both types of the loop.

Now we introduce sequent calculds, LT L which uses only invertable or semi
invertable rules. To get such a sequent calculus, we use primary sequents.

DEFINITION 5. SequenS isprimary if S has the shapE, o' — IT, oA andX, I1
contains only propositional variables,N IT = @.

DEFINITION 6. Sequent calculus for linear temporal logic with inference rules
(= V), (V—=), (= &), (& =), (= =), (=—), (= 0), (@O —), (op), With a loop-
axiom and with an axionl', ¢ — A, ¢ we call sequent calculug,LT L.

- A
Y, o' - II,0A

3, IT contains only propositional variables akd IT = @.
Simple speaking, rulé,) may be applied only for primary sequent.

(Op),

LEMMA 1. Sequent S is derivable in sequent calculus G1LT L if and only if se-
quent S isderivable in sequent calculus GoLTL.
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The proof is omitted because of the lack of the space.

Now we introduce sequent calculdss LT L wich uses loop-check only for se-
quents those are some premises of the (ujg application only. This modification
reduces the number of the checked sequents in the derivation tree.

DEFINITION 7. Loop S ~» " is ao-loop if there exist primary sequensg, S; in
the derivation tree, ané} is obtained from the sequesit andS’l is obtained from the

sequents’ by rule (o) applications (i.e.Si1 (0p), g—f (0p))-
1

DEFINITION 8. We say, that sequeit is ao-loop-axiomif there exists sequerst
satisfying the following conditions:

—§~» S is ao-loop in the derivation tree;

—§~» S is aloop-axiom.

DEFINITION 9. Sequent calculus for linear temporal logic with inference rules
(_) \/)! (\/ _))! (_) &)l (& _))l (_) _')l (_' _))l (_) D)’ (D _))’ (Op)! Wlth ao_loop_
axiom and with an axionl', ¢ — A, ¢ we call sequent calculuSsLT L.

LEMMA 2. Sequent S is derivable in sequent calculus GoLT L if and only if se-
quent S isderivable in sequent calculus G3LT L.

The proof is omitted because of the lack of the space.
Now we prove some lemmas to introduce main restrictions to the loop-check used.
First, we define subformulas and prove some features for them.

DEFINITION 10. We writeF S,y G to define thatF' is subformula ofG.
We use extended term subformula: if we have formula of the shapgethen we
say, that formulaO F is also subformulaafi F (cOF S, OF).

DEerFINITION 11. FormulaF is proper subformula of G, if F is subformula ofG
and formulaG length is greater then formul& length.
We write F C,¢ G to define that” is proper subformula of;.

DEFINITION 12. FormulaF in sequentS is ground if for ever formulaG € S,
formula F is not a proper subformula @ (F ¢, G).

LEMMA 3. If F Csr G,and G C¢ H,then F C;p Hor G =oH =oF =o0A.

Proof. If G Sr H,thena)G Cyp H,0rb)G =H,0rc)G =oH =o0A.

In the cases a) and b), it is evident, thfatC,; H. In the case c), we just have
F Ci¢ H. If H lenght greater thed length, thenF' C,¢ H. If H and F' lengths are
equal thenF = H andG = oH = oF = o0 A. If F lenght is greater the#l length,
thenF =oH, andG = oH = F — contradiction forF" C,r G.



272 A. Bir&tunas

LEMMA 4. If S~ §" isa o-loop then, in any sequent T € S ~ §’, any ground
formula F € T hasthe shape 0 A or o1 A.

Proof. SinceS ~» S’ is ao-loop, there exists such a sequénf thatS; is obtained
from the sequens$’ by rule(o,) application %(op)).
1

There exists ground formula € S, that F S,y G. G € §' andoG € S’l, because
S~ §"is ao-loop. There exists ground formuld € T, thatoG S,y H.

We have, thatF' ¢,s H (becauseF is ground formula inT) and F S,y H
(F S5¢ G, G Csf oG, oG S4¢ H). Therefore,FF = oH = o0 A (this case satisfies
lemma) orF = H.

If F=H,thenG Csr oG andoG S, F(= H). According to Lemma 3G C, F,
oroG =oF =o0A, andF =0 A (satisfies lemma).

SinceG C,¢ F and F ¢ G, then, according to Lemma & C,r G (we get a
contradiction), ofF = oG = o] A (satisfies lemma).

LEMMA 5. Suppose, that S ~» S’ is a o-loop in the derivation tree constructed
according sequent calculus G3LT L. If F is ground formula in sequent S or in se-
quent S’, then formula F or oF isground in all sequentsin a o-loop S~ S’.

Proof. Every rule premise contains only subformulas of the rule conclusion.

Case 1) Ground formul& € S. ThenF € §’, becauseS ~» §’ is ao-loop. Suppose,
that formulaF is not ground on some sequehtinside theo-loop S ~ §’. So, there
exist ground formula; € T, that F Cir G.

There exist ground formuldd € S, that G S, H. According to Lemma 3,
F Cyr H € S (contradiction forF being ground inS), or G = oF andG is ground in
T (satisfies lemma). We got that # is ground in sequerfl, thenF or oF is ground
in every sequent in a-loop S ~» §’.

Case 2) Ground formulA € S’. Suppose, that formul& is not ground on some se-
quentT inside theo-loop S ~» §’. So, there exist ground formulaie T, thatF C,r G.

There exist ground formuld € S, that G S, H. According to Lemma 3,
FCsy HeSorF=H (G=oH =0oF).SinceS~ §'is ao-loop, H € §'. Formula
Fis groundinS’. ThereforeF ¢,s H, andF = H.

If F=H,thenG isgroundinT andG Sy F(= H). S0,G=F orG =oF andis
ground inT. We got that ifF is ground in sequerf’, thenF of o F is ground in every
sequent in a-loop S~ S’.

COROLLARY 1. If we have derivation tree satisfying the following items:
—we have rule application with conclusion T' and premise 7”7,

—there exist ground formula O F (or oO F') in the sequent T,

—formula O F or formula oO F isnot a ground in sequent 7.

Then Lemma 5 says, that sequent T is not inside any o-loop § ~» §’.

Proof goes straightforward from Lemma 4 and Lemma 5.
In other words, if some ground formula was deleted during some rule application
(in bottom-up direction), then we do not need to check any sequent below that rule
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application in order to catch a loop. The main problem is to identify such a situation,
because every time we delete someuwgrd formula, at least one new ground formula
appears.

The only rule (in calculu&3 LT L), which may satify above conditions, (s> O),
then we take left premise (nonmodal case). So, we can add special indexes for modal
operatoid to catch such a situation.

We add different upper-indexes for evatifferent subformulad F in the sequent
S. The bottom-index will be a set of indexes. The bottom-index is defined according

to the following rule: ifD' F Cyy mf vG insequentS, thenV C U andj e U.

It means that every ground formuﬂaF (oroO F) in any sequens have empty set
as its bottom mdex[ij (oro F).

Indexes are some kind of the histories, because they store information abaut applied
rules (efficient calculi with used histories may be found in [3,4]).

DEFINITION 13. Sequent calculus for linear temporal logic with inference rules
(= V), (V=), (= &), (& =), (=), (=), (=0, (O-—), (o*) with a
o-loop-axiom and with an axiomi, ¢ — A, ¢ we call sequent calcuILG4LTL

I 5 A%, A* T = A,o0i,A . r3A \
. (0% —————— (%)
- A0O/A ¥, o - II,0A 7

Here, X, IT contains only propositional variables,N T = . § € {#, +} and

—if there is no formulal’, G (orod%.G ) e T UA, thens = +; andl'*, A*, A* are
the same aF, A, A, only mdex; is fuIIy removed from any subformula

— if there is some formula’. G (or o0%.G ) e T U A, thens = ¢; andI'*, A*, A*
are exactly the same &5 A, A.

Simple speaking, if we got a sequent marked withwe know, that some ground
formula was just deleted and loop cannot appear here. If we delete some ground for-
mula (we also delete some indgxwe must get some new ground formula. These new
ground formulas will be formulas containing modalized subformula with emptyset as
its bottom index.

LEMMA 6. Sequent S is derivable in sequent calculus G3LT L if and only if se-
guent S isderivable in sequent calculus G4LTL.

The proofis straightforward from Corollary 1.

So, we get efficient decision procedure for linear temporal logic if we use sequent
calculusG4LT L with restricted loop-check (for both loop types), which:

— checks only sequents markeddy

— checks only till the first sequent marked with(in top-down direction).

3. Conclusion

In this paper, we prove that some restrictions for loop-check for linear temporal logic
may be applied without loosing derivability. We prove that any ground formula is
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modalized and stable in any loop. These restrictions let us to construct sequent calculus
with efficient loop-check, écause (duringoop-check) only several special marked
sequents must be checked. The same restriction for ground formulas may by applied
for other modal logics (first of all for branching time logic).
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REZIUME

A. BirStunas. Apribojimai cikly radimui sekvenciniame laiko logikos skaiavime

Darbe pateiktas sekvencinis skiavimas tiesinei laiko logikai, kuris naudoja efektygikly radimo me-
chanizna. Darbdrodyta, kad atramies formués cikluose visada yra modalizuotos ir nekinta. Sie apribo-
jimai leidzia mums cikli paieSkoje apsiriboti keliomis specialiai paztomis sekvencijomis. AnalogisSki
apribojimai gali buti pritaikyti ir kitoms modalumo logikoms (wpirma skaidaus laiko logikai).

Raktiniai ZodZiai: sekvencinis skaiavimas, laiko logika, efektyvus cildlradimas.



