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Abstract. A fragment of a deterministic propositional dynamic logi@ DL, in short) is considered

The language of considered fragment contains propositional symbols, action constants, action operator
(repetition) and logical symbols. For safety fragment of considé&r@d L a loop-check-free sequent
calculus with invertible rules is presented.
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1. Introduction

In the paper deterministic propositional dynamic logitK DL, in short) is conside-
red. In DP DL atomic program (or action constant) in each state specifies at most
one successor statB.P DL is a generalization of propositional linear temporal logic
(PLTL, in short). Itis well known (see, e.g., [3], [4]) that with the aim to get termina-
tion of derivations in sequent (or tableaux) calculusfaP DL “good loops” (related
with induction-like rules) and “bad loops” (related with induction-free parts of deriva-
tions) are used. FoP LT L verification of “good loops” was proposed in [5], [1] and
verification of “bad loops” for induction-free non-classical logics was proposed in [2].
The aim of this paper is to construct loopeck-free sequent calculus for a fragment
of DPDL. Instead of both types of loop checking special “final” sequents are used.
These “final” sequents allow us to verify a termination of derivations without loop
checking.

2. Initial sequent calculusfor DPDL

Thelanguageof considered P D L contains: a set of propositional symbélsPy, .. .,
0, 01, ... (called atomic formulas); a set of action constaptg;, y», ... (called
atomic programs); action operate repetition); logical operators, A, v, —.

We do not consider action constructiongcomposition),U (non-deterministic
choice), and ? (test) because we concentrate omthection-like operatos.

Programs dctiong andformulasof D P DL are defined inductively. For example,
v,y (y*)* are actions. Logical formulas are defined in the usual way.A.& a
formula anda is an action, therje]A is a formula,[«] is anaction modality The
formula[a]A means: every possible execution of the actioleads to a situation in
which A is true. Therefore the formula]A means the same as the formiitaie D
{a}A in Hoare-type logic.
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We consider sequents, i.e., formal expressigns..., Ay — B1, ..., B, where
A1,..., A (B1,...,By) is a multiset of formulas. A subformula (or some symbol)
occurspositivelyin some formulaB if it appears within the scope of an even num-
ber of the negation sign, once all the occurrenced @ C have been replaced by
—A v C; otherwise the subformula (symbol) occuregativelyin B. For a sequent
S=A4,...,Ay— B1,..., B, positive and negative occurrences are determined just
like for the formula/A\X; A; o Vi B

Let G be some sequent calculus afigl be any inference rule af. A rule (i) is
applied to get the conclusion ¢f) from the premises ofi). If rule (i) is backward
applied, i.e., to get premises @f) from the conclusion ofi) we have a “backward
application of(i)” instead of “application ofi)". As usual, proof search in sequent
calculi is implemented as a backward derivation, i.e., applying the rules backwards.
Let S be a sequent, then the notatiGh—" S means thas is derivable inG and V
is a derivation ofS in G, i.e., a tree each branch of which ends with an axiom. Let
GV S, ands is the conclusion of a rul@), S; is any premise ofi). Then the rule
(i) is invertible in G, if for all j there exists such a derivatidry of S; in G that
GFYi S;.LetG + (j) means a calculus obtained fraghby adding a rule ;). A rule
(j) is admissiblerule in G, if from G + (j) -V S follows that there exist§’* such
thatG +"" s.

An initial sequent calculug; D P DL for consideredD P DL is defined by the fol-
lowing postulates:

Axiom: T, A — A, A.

The formulaA is called themain formulaof the axiom.

Logical rules:

Traditional rules for logical connectives, A, v, —.

Action rules:

F]_—) Fz
IL [yl — A, [y]l2

(v D,

where[y]T; (i € {1, 2}) is empty or consists of formulas of the shdpéA.

A, [a][a*]A, T — A Fr->AII—>[a]ll; I > A

AT S A ) > A [a']A =),

where the formuld (called an invariant formula) is constructed using formulas from
the conclusion of the rulé— x). The rule(— %) corresponds to the induction-like
axiomA A [a*](A D [a]A) D [a*]A.

From [3], [4] it follows that the calculu& D P DL is sound and complete.

3. Elimination of loop-check for fragment of DPDL

In this section aafetyfragment of D P DL is described and loop-check-free sequent
calculus for this fragment is constructed.

A positive occurrence of action modalify@Q] (Q € {«*, y}) in a sequentS is a
specialone if it occurs within the scope of a negative occurrence of opefatgr
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in S. A sequentS is asafetyone if it does not contain special occurrences of action
modality [ O].

For example, the sequeny*][y]1P — [y*1[y*]1P is safety but the sequent
[¥y*1=[y1P — [y*1[y*]1P is not safety.

To eliminate mentioned in the introduction two type of loop-check let us introduce a
marked action modality Q]* (along with ordinary action modalityQ]) andmarked
atomic formulasof the shapeP™ (along with non-marked ones). The marked action
modality [ Q]" and marked atomic formulas are used to define special final sequents
which allow us to exclude loop checking.

The marking is defined inductively as follows:

(P°)T = P whereo € {@, +} and P is an atomic formula(M & N)T =M ©
N+t whereo € {A, v, D}; M)t =sM* wheres € {—, [«*1}; (y1°M)T =[y]TM*T
whereo € {&, +}.

The sequenS is induction-like final(i-final, in short) sequent iy has a shape
25 DAl T el T g1 T, L [ 1T T — 557, (81T AL . (81T A,
wherex " (i {1, 2}) is empty or consists of marked atomic formulas ajeh =3 =2;
n>0, m >0, [ >0. Thei-final sequents replace the induction type loops.

The sequent of the shaie> A (calledregular) are used to distinguish between
“induction-type” parts of derivation (i.e., the parts containing applications of the rule
for positive occurrence of action modalifg*]) and “non-induction-type” parts of
derivation (i.e., the parts not containing applications of the mentioned rule).

The sequentS is regular final (r-final, in short) sequent ifS has a shape
DI P2 D WP 7% i W GV | 125 I D GG 7 | (58 g ¥ P - 33, whereo €
{9, +1L 2 NEf =2,n>0, m=0.

A loop-check-free calculu&1D P DL is obtained from the calculus DP DL by
the following transformations:

e The rule(x —) is replaced by the following one:

A* [all@*]t AT 5 A "

—),

[@*]A.T 5 A

wherea € {@, r}; in the conclusion of the rule the outmost action moddlity] in the
formula[a*]A is not marked.
e The rule(— ) is replaced by the following one:

'S A AT T— A, [a]la*]TA N
(= *7),

IS A [a]A

where € {@, r}; in the conclusion of the rule the outmost action moddlity] in the
formula[a*]A is not marked. In spite of the conclusion of the rule is regular or not,
the left premise always is a regular sequent, while the right premise is not a regular
sequent. This rule is exactly one tliatroduces the regular sequents
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e The rule([y)) is replaced by the following two rules (for simplicity these rules
are formulated with one action constant):

My, [0*]T 5 o, [B*1A
29 [y )iy, [y lle T 5 S22, (1M, [V A

(y17),

wherel € {&, r} and the conclusion of the rule is noffinal sequent;Ei’1 N 2;’2 is
empty,o; € {2, +}, u € {2, +}; [y]*I11 U [y ]I, is not empty, and ify ]I, is empty
then[y ]#I1; contains at least one formula different frgp ™A whereA # [a*]B. In
special case, the conclusion of the rule does not contain marks.

I, [a*]"T — [B*]A

+
>, [y 1L [y 1o 1T — o, [Y1(B*]1T A ([y1),

whereX1 N 3y is empty.

e The sequent of the shapg, AT A A, A%, where A € {@,r}, T € {D, %},
o € {@, *}, is alogical axiom

e Any i-final sequent imon-logical axiom

It is obvious that all rules o571 D P DL are invertible.

A derivation V of a sequent in the calculusG1PLTL is asuccessfubne, if
eachbranch ofV ends with a logical axiom ar-final sequent. In this case a sequent
S is derivable inG1DPDL. A derivationV of § in the calculusGiDPDL is an
unsuccessfubne if V contains a branch ending withrafinal sequent. In this case a
sequents is non-derivable.

An end-sequent of a derivation in calculds D P DL does not contain occurrences
of marked modalities or marked atomic formulas. On the other hand, sifical
sequent is used as stopping device for non-derivabilit¢GirD P DL, it is assumed
that end-sequent of a derivation in calculdsD P DL is regular sequens, of the

shapel’ 5> A.

Example 1.(a) LetS be a sequen®, P, [y*]A — [y*]P, whereA = (P D [y]P).
Let us construct a derivation ¢fin GyDPDL:
S* = P+, [y*]JrA N [)/*]JFP
O, [YIly*1"A, PS5 [y1ly*1HP, PT5 QP [y1" P [ylly 1T A= [y1ly*T*P
+ P rp O
Q,P,(PDyIP)", [ylly"I"TA— [ylly"I" P ()
Q. P, [y*I(P D [yI1P)> P; Q,P,[y*I(PD[y1P)— [ylly*I* P (%7
S=Q.P.[y*I(P DlyIP) > [y*]P

M)

SinceS* isi-final sequenG1DPDLF S,.



Loop-free verification of termination of derivation for a fragment of dynamic logic 287
(b) LetS =[y*1[y]1P — [y]Q. Let us construct a derivation 6fin GiDP DL:
S =PLIPH I TIPS 0 (1
Py I lylP 5 Q (1)
PE Iy T Y IP > V10
S, =Iy*llylP > [y1Q
SinceS* is r-final sequenG1DP DLV S, .

THEOREM 1. The calculusG1DP DL is loop-check-free, and PLT L +- S if and
onlyif G1PLTL |- S, whereS is a safety sequent.
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REZIUME

R. Pliuskevtius. Beciklisirodymuy baigtinumo tikrinimas dinamires logikos fragmentui

Straipsnyje yra nagrigjama determinuota propozieidinamire logika. Sukonstruotas beciklis sekvencinis
skaciavimas Sios logikos fragmentui. Ciktikrinimas yra pakeaiiamas tam tikro pavidalo sekvencijomis.
Raktiniai zodziai propozicire dinamire logika, sekvencinis skaigvimas, cikl tikrinimas, apvetiama
taisykle.



