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Abstract. In this paper,we consider the problemof semi-supervisedbinary classificationby Support Vector
Machines (SVM). This problem is explored as an unconstrained and non-smooth optimization task when
part of the available data is unlabelled. We applynon-smooth optimization techniques to classification
problems where the objective function considered is non-convex and non-differentiable and so difficult to
minimize. We explore and compare the properties of Stochastic Approximation algorithms (Simultaneous
Perturbation Stochastic Approximation (SPSA) with the Lipschitz Perturbation Operator, SPSA with the
Uniform Perturbation Operator, and Standard Finite Difference Approximation) for semi-supervised SVM
classification. We present some numerical resultsobtained by running the proposed methods on several
standard test problems drawn from the binary classification literature.
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1. Introduction

Support Vector Machines (SVMs) are well-known data mining methods for classifi-
cation, regression and time serries analysis problems. In the standard binary classi-
fication problem, a set of training data(ui , yi), . . . , (um,ym) is analysed, where the
input set of points isui ∈ U ⊂ �n, theyi is either +1 or−1, indicating the class to
which the pointui belongs,yi ∈ {+1,−1}. The learning task is to create the classifica-
tion rulef : U → {+1,−1} that will be used to predict the labels for new inputs. The
main idea of SVM classification is to find a maximal margin separating hyperplane be-
tween classes [4]. The standard binary SVM classification problem is shown visually
in Fig. 1.

〈w,u〉 is the scalar product of two vectors. For a linearly separable case, the support
vector algorithm simply looks for the separating hyperplane with the largest margin.
The distance between two hyperplanesH1 andH2 is called a margin equal to2

‖w‖ ,
wherew is the normal vector of a separating hyperplane. Therefore the goal of clas-
sification is to maximize the margin width2

‖w‖ which is equivalent to minimizing
‖w‖2

2 . Now we can formulate our problem as a standard quadratic programming prob-
lem [4, 5]:
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Fig. 1. Linear separating hyperplanes for the separable case.

min
w,b

1

2
‖w‖2, (1)

subject to

yi · ((wT · ui) + b
)
� 1, i = 1, . . . ,m.

There are a lot of classification problems where data labelling is expensive and
difficult, or labelling is often unreliable. When data points consist of two sets exactly:
one set that has been labelled by a decision maker and the other that is not classified,
but belongs to one known category we have a traditional semi-supervised classification
problem. To solve that we may rewrite problem (1) in the following unconstrained
form [1]:

min
w∈�n,b∈�f (w,b), (2)

where

f (w,b) = 1
2
‖w‖2 + C1 ·

p∑
i=1

max
(
0,1− yi · (wT · ui + b)

)

+ C2 ·
m+p∑

i=p+1

max
(
0,1− |wT · ui + b|),

whereC1 � C2 � 0 are certain penalty coefficients,p is the size of training set,m is
the size of testing set. The first two terms in the objective functionf (w,b) define
the standard SVM, and the third one incorporates unlabelled (testing) data. The error
over labelled and unlabelled examples is weighted by two parametersC1 andC2. This
form seems advantageous especially when the input dataset is very large. On the other
hand, the functionf (w,b) is non-differentiable and, moreover, due to the third term
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involving the unlabelled points, it is even non-convex. Since the objective function of
the unconstrained SVM model is a non-smooth function, most of powerful methods
of smooth optimization cannot be used to solve it. In [1] authors applied a bundle
type optimization method for semi-supervised classification problems. In this paper,
we implement and compare three SA algorithms: Simultaneous Perturbation Stochas-
tic Approximation (SPSA) algorithm with Lipschitz Perturbation Operator (SPSAL),
SPSA with Uniform Perturbation Operator (SPSAU), and Standard Finite Difference
Approximation (SFDA) algorithm.

2. Stochastic approximation techniques

Application of Stochastic Approximation (SA) algorithms to non-differentiable func-
tions is of particular theoretical and practical interest in classification. The methods of
SA use the ideas of smoothing and stochastic gradient. Thus, the solution of (2) is pro-
vided by minimizing smoothed function, while the smoothing parameter is changed in
an appropriate way [3].

Let us introduce an SA sequence:

xt+1 = xt − ρt · gt , t = 1,2, . . . , (3)

wheregt is the value of the stochastic gradient estimator at the current pointxi , ρt is
a scalar multiplier in iterationt , andx0 is the initial point. This scheme is the same
for various stochastic approximation algorithms that differ only by the approach to
stochastic gradient estimation.

To solve problem (2), we consider and compare three stochastic approximation
methods:

1) SPSAL– SPSA algorithm with a Lipschitz perturbation operator, the stochastic
gradient is as follows [2]:

g(x,σ, ξ ) = (f (x + σξ) − f (x)) · ξ
σ · ‖ξ‖ , (4)

whereξ is a vector uniformly distributed in the unit ball.
2) SPSAU– SPSA algorithm with a uniform perturbation operator, the stochastic

gradient is expressed as follows [6]:

g(x,σ, ξ ) = (f (x + σ · ξ ) − f (x − σ · ξ )) · ξ
2σ

, (5)

whereξ is a vector uniformly distributed in the hypercube[−1;1]n.
3) FDSA– Finite Difference Stochastic Approximation algorithm and the stochastic

gradient is a vector with components [6]:

gi(x,σ, ξ,υ) = f (x + σ · ξ + υ · εi) − f (x + σ · ξ − υ · εi)

2υ
, (6)

whereξ is the same as in (4),εt = (0,0,0, . . . ,1, . . . ,0), t = 1,n, is the vector with
zero components except theith one, which is equal to 1,υ > 0 andσ > 0 are the
values of finite difference and perturbation parameters, respectively.
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The regulation conditions of step length and the perturbation operator that guar-
antee the convergence of the SA algorithm

∑∞
t=1ρt = ∞,

∑∞
t=1ρ2

t < ∞, σt →
0, |σt−σt−1|

ρt
→ 0, ρt

σt
→ 0 are determined and the rate of convergence of SA

E‖xt − x∗‖2 = O(t−β) for 1� β < 2 is proved [3].

3. Experimental results

To study the applicability of SA algorithm (SPSAL, SPSAU, FDSA) to solve problem
(2) several standard examples drawn from the binary classification literature where
chosen. Each test function was minimizedM = 100 times by SA algorithms de-
scribed above. Since the error over labelled and unlabelled examples is weighted by
two parametersC1 andC2 andC1 � C2 � 0, penalty coefficientsC1 andC2 in func-
tion (2) are chosen equal to 2.0 and 0.5, respectively. The coefficients of sequence
(4) were chosen according to the convergence conditions [3]:ρt = n · min(a; b

t
),σt =√

(n+2)·(n+3)
n·(n+1)

min(c; d
tβ

),β = 0.75, wherea,b, c,d are different for various stochastic
approximation algorithms.

Example 3.1. Linear example.Data set [8]:

Table 1. Training set

u1 7 7 11 13 8 9 15 7 15 13 14 9 11 15 10
u2 5 11 11 11 10 9 9 7 7 5 4 3 3 3 7
y 1 1 1 1 1 1 −1 1 −1 −1 −1 −1 −1 −1 1

Table 2. Testing set

u1 4.5 8 7 9 9 16 6 12 10.5 12 12 11 1.5 6 8
u2 6.7 5 10 7 1 2.5 7 0.5 12 13 4 14 0.5 7 1

The linear separating hyperplanes of training data (Example 3.1) are demonstrated
in Fig. 2. Fig. 3 illustrates that the SPSAL classifier for training and testing datasets
is close to an optimal decision boundary. Corresponding averaged separating hy-
perplanes for other algorithms are similar: for SPSAU is−0.8861u1 + 0.9469u2 +
3.6577= 0, for FDSA is−0.7458u1 + 0.6873u2 + 3.6499= 0. The linear separating
hyperplanes in Fig. 2 are obtained solving problem (1) for training set by MathCad
Software.

Example 3.2. High dimensional case. The dataset consists of 200 vectors. The
covariate vectorsx is 20-dimensional and generated uniformly from the unit cube
[0,1]20. The boundary between two classes is a linear function of only first three vari-
ables:f (x) = 2u1 + 4u2 + 4u3 − 4.8. Therefore the important set is{u1,u2,u3} and
the remaining seventeen variables are redundant [7].
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Fig. 2. Linear separating hyperplanes of training.

Fig. 3. Linear separating hyperplanes of the training and testing data (SPSAL).

We judge by the training error on the applicability of SA algorithms to solve prob-
lem (2). The training error is just the measured error rate on the training data and
expressed as follows:Remp(b) = 1

2p

∑p
i=1 |yi −h(w,b)|, whereh(w,b) = 〈w,u〉+b.

The “loss” is the term1
2|yi − h(w,b)|. Fig. 4 depicts how the averaged training error

rate changes for each algorithm as the training sample sizep is increasing. For all SA
algorithms their training error decreases significantly.

Figs. 5 and 6 show the value of the objective function during the SA iterations
on two datasets described above. Dependences of averaged objective function on the
number of iterations confirm convergence of the SA algorithms described above. The
theoretical and empirical least squares estimates of the rate of convergence by the
Monte-Carlo method are presented in Table 3. As we can see from the table, computer
simulation corroborates very well the theoretically defined convergence rates.
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Fig. 4. The averaged training error rate as the training sample sizep is increasing.

Fig. 5. Value of the averaged objective function during the SA iterations (Example 3.1, number of
iterationsN = 10000, number of trialsM = 100).

Fig. 6. Value of the averaged objective function during the SA iterations (Example 3.2, number of
iterationsN = 10000, number of trialsM = 100).

4. Conclusions

In this paper, the problem of semi-supervised binary classification by Support Vector
Machines (SVM) has been considered when a part of the available data is unlabelled.
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Table 3. The least squares estimates of the rate of convergence of SA algorithms by the Monte-Carlo
method

EmpiricalTheoretical:
γ = 1+ β = 1.75,β = 0.75 SPSAL SPSAU FDSA

Example 1 1.7262 1.7137 1.7543
Example 2 1.7733 1.7388 1.7411

We explore three SA algorithms (SPSAL, SPSAU, FDSA). The applicability of SA
algorithms in such problems has been studied by computer simulation. Computer sim-
ulation results corroborate very well the theoretically defined SA convergence rates.
The simulation studies with proposed datasets show that these algorithms can be suc-
cessfully applied to optimizing non-differentiable loss functions in the classification
problems. The main advantage of the methods proposed is the possibility to train the
classifier on the basis of a large number of labelled and unlabelled points. The choice of
an appropriate interval for penalty coefficients might be the subject of future research.
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2. V. Bartkutė, L. Sakalauskas, Application of stochastic approximation in technical design,Series on
Computers and Operations Research, Computer Aided Methods in Optimal Design and Operations,
7, 29–38 (2006).
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REZIUMĖ

V. Bartkutė-Norkūnienė. Stochastinės aproksimacijos metodai atramini ↪u vektori ↪u klasifikavimo
algoritmuose

Straipsnyje pasi¯ulyti trys stochastin˙es aproksimacijos (SA) metodai binarinio klasifikavimo uždaviniams
spr↪esti naudojant atramini↪u vektori↪u klasifikatori↪u (Support Vector Machines). Tokiuose uždaviniuose
kvadratinio programavimo uždavinys yra suvedamas↪i nediferencijuojamo optimizavimo uždavin↪i be ri-
bojim ↪u taikant nediferencijuojamas baudos funkcijas. Norint

↪
isitikinti ši ↪u metod↪u tinkamumu straipsnyje

aptariamai problemai spr↪esti nagrinėjami du standartiniai klasifikavimo uždaviniai.

Raktiniai žodžiai: atramini↪u vektori↪u mašinos, pusiau perži¯urėtas klasifikavimas, stochastin˙e aproksi-
macija.


