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The discounted local limit theorems for large deviations
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Abstract. Theorems of large deviations, both in the Cramer zone and the Linnik power zones, for the
normal approximation of the distribution density function of normalized Sy Z,fio Xy, 0<v <1,
of i.i.d. random variables (r.v)o, X1, ... satisfying the generalized Bernstein’s condition are obtained.
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1. Introduction

Let Xo, X1, ... be a sequence of independent r.v. with the common distribution func-
tion F(x), and letv, 0 < v < 1, be a discount factor. We define rSy. by

o¢]
So=Y v*X;. (1)
k=0

which may be interpreted as the present value of the sum of certain periodic and iden-
tically distribution payment<,. We assume that the first two moments of Ky.are
finite

u=/ xdF(x) < 0o, azz/ (x — w?dF(x) < 0o, (2)

—00 —00

and that the centered momer§X; — w)*, s = 3,4, ... satisfy the generalized
S.N. Bernstein condition: there exist constants 0, K > 0 such that

[EXk — )| < OV K262, 5=3,4,.... (B,)

Notice that the mean and variance of the $,vare, respectively,

ES,=u(l—v)t and DS,=o2(1—1?)"" 3)
It has been shown in [2], that the normalized r.v.
Zy=0tA—-)Y3(s, — p@-vt), (4)

with meanEZ, = 0 and varianc®Z, = (1+v) 1, is asymptotically normal it — 1.
Let F,(x) and p,(x) be the distribution and density function, respectively, of the r.v.
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Z,. We denote the normal distribution with zero mean and varigheev) 1 by N,,
i.e., Ny(x) = [ ¢y(y)dy where

1
(pv(x)=(1+v>2exp{—H—vx2}, —00 <X < 0. (5)
2 2

The distributionF, (x) of random variableZ, has been approximated by normal
law N, (x) and the exact estimate has been derived by H.U. Gerber [ 1 ]. The authors
of the current paper proved in [ 2 ] the theorems of large deviations. Let us notice that
the asymptotic analysis of a density functipy(x) of a random variableg, is more
complicated than asymptotic analysis of distributigix).

Note that the characteristic functiof(r) = E exp{iz X} of the r.v. X is analytic
in the vicinity of the pointr = 0 if condition (B,) is satisfied withy = 0. In this
case, large deviation theorems are proved in the Cramer zone. In the case when the
moments of r.vXy satisfy condition(B,,) with y > 0, f(¢) is not analytical. In this
case, theorems for large deviations in power Linnik zones are provedin[3].

2. Thediscounted version of the large deviations

In order to prove theorems for large deviations for the Zy.defined by (4), it is
necessary to obtain upper estimates for its cumulgrtg, ), / = 3,4, ... .

PrROPOSITIOND. Ifforrv. X, k=0,1,2,... the condition(B, ) is satisfied, then

1 (nttr
iz, < . , 1=3,4,..., 6
CR A v AN (6)
where
o
Ay = , 7
2(c VK)ZWI—v 0
aVv b=maxXa,b}.
The proofis presented in [ 2].
Denote
1 1
Av(y) =oAL ey(y) =(1/6)(V2/(8(1+ v)'17)) T, (8)

Tv(y):(3/8)(1_X/Av(y))Av(V), O<x <Ay(y).

In what follows, let6;, i = 1,2,... denote some quantities, not exceeding 1 in
absolute value. Further, suppose that the densifyx) of the r.v.Xp is bounded, i.e.,

Suppx,(x) < C < co. (D)
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THEOREM 1. If for the r.v. X; with u = EX; and 62 =E(X; — n)2 >0, k =
0,1,2,... conditions(B,) and (D) are fulfilled, then for each integdt / > 3 in the
interval 0 < x < A, (y) the following relation holds:

1-3

= exp{Ly(x)}<1+ ZMU(X) +61g(y.1)- (

v=0

Pov(x)
@y (x)

X+ 1>172
Ay

2.2
+ 62

1 2
1. exp| = T2 | +63- c(K 0. 7)

_3 c3 1
x CoSexp| - AK Vo) 1- v2}>’ ®)

whereq(y, 1) is defined by6.7) in [3], ¢(K,o,y) =384/21e?24 (K Vv o), and

{(1/V)+l+1, y >0,

— k —
Lyy= Y ', p=1""0 V=0,

3<k<p

(10)

wherei, = —b;_1/k and b, are determined from the equation

/1 ! 1, j=1,
Zl;ml(zv) > [lvi={o $-2s... (11)
r=

et jr=ji=1 ’

In particular,
-1 1 3
by=T,"(Zy) =1+, b2=—§(1+v) I'3(Z,),

1
by =21+ 0)*(Ma(Zy) =30+ 0)E(Z))). ...

PolynomialsM,, (x) are defined by formula

My(x) =Y Ki(x)gy—i(x), (12)

k=0
where

%
1 k)n
K,(x)= Z 1_[ F( - Am+2xm+2> , Kox)=1,
m=1"""

qv(x) =Y Hyp2(0) [ ] % (Cosa(Z0) / 0m + 2)!)k’",
m=1""T"

go(x) = 1, H;(x) are Chebyshew—Hermite polynomials, and the summation is taken
over all integer solutions of the equatién+ 2k, + ... + vk, = v. In particular,

1
Mo(x)=0, My(x)= —5 I'3(Zy)x,
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Ma(x) = (1/8) (5T3(Z) — 2Ma(Zu)x® + (1/24)(3Ma(Z,) — 5T3(Z) ),

where

VJ1—v

o

L1
)—r,(xo), 1=2,3,.... (13)
1—vf

iz =(

Proof of Theorenml. The proof of this theorem is based on the results obtained in
[4] for the distribution density functiopz, (x) of normed sum o¥, = (v/DS,) 1S,
Sy = 27215;”), of independent non-indentically distributed random variables in the
scheme of series. First of all, we notice that conditi@n implies the following in-
equality for the density functiopy; (x) of r.v. ¥; = v/ X;: sup, py,(x) < Cv~/. The
quantity K, in [4] corresponds<, := 2sup >q v/ - {K vo}=2{K Vo). The expres-
sion of the remaining terms in the statement of the Theorem 1 is derived on the base
of the estimate oR,, , (24) in [4].

THEOREM 2. Let for the r.v/sXy, k=0,1,2,... conditions(B,) and (D) are
fulfilled. Then for

x>0, x=o(1-v)™"), u=(2+4(1vy))’l (14)
the relation
Du(x) 1 v -1 (15)
Dy (x)

holds. In particular, ify = 0, the relation(16) holds forx >0, x = o((1 — v)~1/5).

Proof of Theorem2. For all x = o((1 — v)*%”), where v = v(y) = (1+
2max1, y))~1, we getx Ayt = o((1 — v)MH)/A+2maALyhy 0 for all y > 0 if
v — 1. We have to show that, (x) — 0 for all x = o((1 — v)*%”). Recalling ex-
pression (11) oL, (x) and making use of estimates (6) of the cumuldh«Z, ), we
derive

(1+ v)26Y

_3,
A, o((1—v)~2")

1
[h3x% = 2@+ 0)*[Ma(Z)x%] <
= 0((1 — v)%(173”)> -0, v—1,

because 1 3v =2(max{1, y} — 1)(1 + 2max1, y})’l > 0. Further, having in mind
the expression of the polynomialé. (x) (formula (13)) included into the statement of
Theorem 1, and using the estimates (7) of the cumulgnis,), [ = 3,4, ..., we get
M,(x)—0,r=0,1,...,1 — 3. Inview of Theorem 1, this yealds the proof.
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REZIUME

L. Saulis, D. Deltuviere. Didzuju nuokrypiy diskontavimo lokalires teoremos

Darbe gautos normuotos sum8s= Z,fio v* Xy, 0 < v < 1 skirstinio tankio funkcijos, (x) aproksi-
macijos normaliuoju dsniu, atsizvelgianasimptotinius skleidinius, didgju nuokrypiy teoremos Krame-
rio ir laipsnirése Liniko zonose, kai nepriklausomi vienodai pasisgiassitiktiniai dydZiaiXo, X1, X2, ...
tenkina apibendrig@N.S. Bernsteincayga.

Raktiniai zodziai:skirstinio tankio funkcija, charakterisénfunkcija, kumulantas, didieji nuokrypiai,
diskontavimo faktorius.



