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Abstract. In the paper two-dimensional limit theorem for the modified Mellin transform of the Riemann
zeta-functionis obtained.
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Let ¢(s), s = o + it, as usual, denote the Riemann zeta-function. The modified
Mellin transformsZ; (s) of powers¢ (3 +it)[*, k > 0, are defined, fos > og(k) > 1,

by
Zi(s) = /100 ‘{(% + ix)‘ZkJF‘Y dx.

In [2] and [3], discrete limit theorems on the complex plane fris) and Z»(s),
respectively, were proved. Denote BYS) the class of Borel sets of the spageand,
for N e NU {0}, put

1
)= 1,
un(...) NT1

o<mN

where in place of dots a condition satisfied/yis to be written. Le#: > 0 be a fixed
number.

THEOREM1 [2]. Let o > % Then on (C, B(C)) there exists a probability measure
P, such that the probability measure

un(Z1(o +imh) € A), AeB(O),

converges weakly to P, as N — oo.

THEOREM2 [3]. Let % <o < 1. Thenon (C, B(C)) there exists a probability mea-
sure P, such that the probability measure

un(Z2(0 +imh) € A), AeB(O),

converges weakly to P, as N — oo.



32 V. Balinskaitée

The aim of this note is a two-dimensional limit discrete theorem for the functions
Z1(s) and Z2(s). Define

PN 61,00 = UN((Z1(01 +imh), Z3(02 +imh)) € A), A € B(C?).

THEOREM 3. Suppose that o1 > 3 and § < o2 < 1. Then on (C?, B(C)?) there
exists a probability measure P, ,, such that the measure Py o, », converges weakly
to Py, 6, @SN — 0.

Leta > 1 be afixed number, foy > 1,00 > 3, v(x,y) = exp(—(3)°0}, and

a 1 2k
Zhoa,y(s) = / {(— + ix)‘ xSv(x,y)dx, k=12
1 2

We begin the proof of Theorem 3 with a limit theorem for the vector

Z,y(01,02,1) = (Z1,4,y(01+i1), 22,4,y (02 + i1)).
For this aim, we apply a limit theorem on the torus
Qa = 1_[ Yu>
uell,al
wherey, = {s € C: |s| = 1} dzefy forall u € [1, a]. By the Tikhonov theorem, with the

product topology and pointwisaultiplication, the torus2, is a compact topological
Abelian group. O, B(L2,)), define the probability measure

ON.a(A) = un (@™ u e[l a)) € A).

LEMMA 4. On (., B(R2,)), there exists a probability measure Q, such that the
probability measure Q y , converges weakly to O, as N — oo.

Proof of the lemma is given in [3], Theorem 5.
Now let

Py a.y.01.0,(A) = un(Z, (01.02.mh) € A), A eB(C?).

THEOREM 5. On (C2, B(C?)), there exists a probability measure P, y o, », SUch
that the probability measure Py 4. y,44,0, CONverges weakly to Py y o, o, 8S N — 00.

Proof. Define a functiorh, ,: Q, — C? by the formula

ha,y({yx: xel[lal}) = (/1

r

a

E(% + iX>‘2x*“1v(x, Yy tdx,

E(% + iX>‘4x*“2v(x, y)’y?ldX>,
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where

~ | y«if y,isintegrable over [L],
Yx=1an arbitrary integrable ovét, a] circle function otherwise

Then the functiork, , is continuous, and

hay((x™™: x € [1,al})

:</la {(%—i—ix)‘zx*(”lﬂ.mh)v(x, y) dx, /la

=Z, (01,02, mh).

C(%—i—ix)rx’(“ﬁmh)v(x, ») dx)

Therefore, the theorem is a consequence of Lemma 4 and Theorem 5.1 of [1].
By [2], [3], the integrals

Zk,y(s)z/loo‘g(%—l—ix)rkxSv(x,y)dx, k=12,

converges absolutely for > 5 ando > £, respectively.
Let
Z,(01,02,1) = (Z1,y(01+i1), Z2 y (02 + i),
and
PN y,01,02(A) = uN(Z,(01,02,mh) € A), A € B(C?).

THEOREM 6. Let 01 > 3 and § < o2 < 1. Then on (C?, B(C?)) there exists a
probability measure P, o, », such that the probability measure Py 5, o, CONvVerges
weakly to Py 4, 5, 8S N — 0.

Proof. Let M > 0 be arbitrary number. Then we have that

iMSUPPy 4.y.01.0,(11z] € C?: 2] > M})
N—o0

=limsupun(1Z,,, (01,02, mh)| > M)
N—o00

N
<limsu ,02,mh
N%JDM(N+1 Z 1Z,,,(01,02,mh)]

Nl

M~

5 (3 1200y (on +imm)2)

m

1 .
< — suplimsup
a2l N—oo N+1

~
Il
N

NI

M~

;)
N
<%suplimsup ! (Z

|Zka,y (o1 + imh) 2)
az1l N—oo N+1 m—0k “r

Il
N
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2
1
<Mk_zl|zky(ok>|

slm

Hence, taking = Re~1, we find that

IimsupPN,a,y,ol,oz({g € (CZ: lz| > M) <e
N—oo

Therefore, we obtain that the family of probability measu(&s , 5, 0,: a > 1}
is tight, and relatively compact. Thus, there exists a subsequefgg o,,0,} C
{P4,y,01,0,) SUCh thatP,, | 5 -, CONVerges weakly to some meas#ge,, ,, asai —
.

On a certain probability spad&, B(R2), P), define a random variabl, by

POy =hm)=——, m=01..,N,

and put

Xy ay(01,02) = Z, (01,02,0N).

Then by Theorem 5,
D
XNay01,02) —— X, ,(01,02), (1)

wheregavy(al,az) is a C2-valued random element with the distributid® y o, 0,
Moreover, from above we have that

D
X0y,y(©1.02) ;2 Provos: (2)

Denoting byp the metric onC?, we obtain that

lim limsup

4= N_so00

N
72 P(Zay(01,02.mh). Zy(01. 02, mh))
m=0

< lim I|msupz :—Li- Z | Zk,a,y (Ok +imh) — Zi (o) +imh)| = 0. (3)

a%oo N—oo ;3
Now IetXN,y(al, op) = gy(al, 02,0y). Then, in view of (3), for every > 0,

I|m IlgwsupIP’(p(XNay(ol,@) Xy y(01,02)) 2 €)
—> 00

I|m limsupuy (0(Z,,, (01, 02,mh), Z, (01,02, mh)) > &) =0.
N—o00

This, (1), (2) and Theorem 4.2 of [1] prove the theorem.
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Proof of Theorem 3. In view of Theorem 6, in remains to pass from the vector
Z,(01,02,mh) to

Z (01,02, mh) = (Z1(01 + imh), Z2(02 + imh)).

In[2] it was proved that, fos > 3,

N
1

lim limsu E Z1(oc +imh) — Z1 (o +imh)| =0,
y—00 NaoopN—i-lmzo| v imi 1J(0 il

and in [3] it was obtained that, for > £,

N
lim limsu Zo(o +imh) — Z5 (o +imh)| =0.
JJim_lim sup +1”§| 2( ) = Z2,y( )

Hence, it follows that

N
1

lim limsu Z(01,092,mh), Z (01,02, mh)) =0.
Sam, N%oopN"i‘lmX_;)p(_(al 02,mh), Z (01,02, mh))

Therefore, putting
XN(O:L’ 02) - 5(017 02, 9N)7

we derive that, for every > 0,

imsupP(p(Xy ,(01,02), X y(01,02)) =€) =0. (4)

lim |
Y= Nsoo

By Theorem 6, we have that
D
Xy ,y(01,02) — X, (01,02), )

wheregy (01, 02) is aC2-valued random element with the distributi®® ;, o,. Sim-
ilarly, as in the proof of Theorem 6, we find that the family of probability measures
{Py.01,0,- y > 1} is tight. Hence, it is relatively compact. Therefore, there exists a sub-
sequencéPy, o, 0,1 C {Py.01,0,) SUCh thatPy, . ., cOnverges weakly to some proba-
bility measurepP,, ,, asy; — oc. Hence

D
Xyl (017 02) ylj)oo PU]_,Uz-
This, (4), (5) and Theorem 4.2 of [1] again show that

D
XN(OJJOZ) ? PU]_,UZ
N—00

and the theorem is proved.
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