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On the uniqueness of ARCH processes
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Abstract. In this note we prove the uniqueness of the solution to ARCH equations under conditions, which
are weaker than in some earlier results.
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1. Themain result

Let (¢x | k € Z) be a family of iid nonnegative random variablés, | i > 1) a sequence
of nonnegative numbers amg > 0. Consider the following system of equations:

00
Xk = (a() + Zaixk,l)ek, k eZ. (1.2)
i=1

Any strictly stationary nonnegative solution to (1.()), is called anARCH process.

A solution (xy) is callednon-anticipativeif, for all k, x; is independent of;, [ > k.
The most known example of ARCH processes is a sequeﬁ¢ewhere(rk) is a

so-calledGARCH(p, ¢) process, a stationary solution to the equations

Tk = OkEk;
p q

01(2:54-2,31-0](271- +Zajr,(27j, (1.2)
i—1 =1

where theg; are iid with zero mean§ > 0, g; > 0, «; > Ofor alli, j. [4] showed that
(r?) satisfies the associated ARCH equations (1.1) witk= ¢2, ag = §/(1 — (1))
and with coefficientsy; defined by the equality (1) = a(¢)/(1 — B(¢)); herea(t) =
YR ait, a(t) = Z;’.:l ajt! andp() =Y ", Bit'.
This paper investigates the question, whether a solution to (1.1) is unique. The main
result is the following.

THEOREM 1.1. Suppose the following conditions are satisfied with some ¢ > 1.:

Elog ¢y < o0, (1.3)
Zaiqi < 00. (1.4)
i>1

Then system (1.1) can have only one strictly stationary solution.
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In the literature, there exist few results concerning uniqueness of ARCH processes.
[1] considered GARCHY, ¢) processes and proved the uniqueness ofritegrable
non-anticipative solution to (1.2). [3] generalized his results to the general ARCH
processes. These results are not comparable with Theorem 1.1: the later does not cover
all ARCH processes because aindition (1.4); on the other hand, Theorem 1.1 does
not assume integrability of a solution.

[5] considered GARCH(1,1) processes and proved their uniqueness without inte-
grability assumption. [2] generalized his results to the GARg{] case. Theorem
1.1 generalizes the uniqueness part of Theorem 1.3 of [2], because the coefficients of
ARCH equations, associated with (1.2), decay geometrically fast (see [1]).

Finally, [4] proved the uniqueness of an ARCH process under the following as-
sumptions:

(i) a; decrease, starting from somg

(i) for someqg > 1,

> nkng" < 00, (1.5)
n>0

where they,,, are defined by (2.6) below.

In [4], we showed that the convergence radius of the séries,t" does not ex-
ceed that of the serigs, a,t". Therefore condition (1.5) is stronger than (1.4). More-
over, Theorem 1.1 does not require monotonicity of coefficients. On the other hand, in
[4] we didn’t impose any integrability condition an such as (1.3).

2. The proof
To prove Theorem 1.1, we need two lemmas.
LEMMA 2.1. Let (p,) be a stationary sequence of quasi-integrable random vari-

ables. Thenthere exists a randomvariable &€ with valuesin the extended real line, such
that almost surely

PL+ -+ P

n n— 00

§. (2.1)

Proof. If E|p1] < o0, the lemma follows from the ergodic theorem, see, for exam-
ple, Shiryaev [7, Chapter V, Theorem 3].E[f,ol+ < 00, Ep; = o0, it follows from the
subbaditive ergodic theorem, applied to the process

X5t = Ps+1+ -+ por,
see [6], Theorem 2. IlE;ol+ =00, Ep; < oo, the subadditive ergodic theorem should
be applied to the procesgs Xj;).

LEMMA 2.2. Suppose, condition (1.3)is satisfied and let (x;) be a stationary so-
lution to (1.1). If a;, > O for some ig > 1, then almost surely

logx_,

n

=0 (2.2)
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Proof. Let (x;) be a stationary solution to (1.1). By (1.8y,> 0 almost surely. The
inequality xg > agep then implies thak > 0 almost surely. By stationarity, atl are
positive with probability 1.

For j > 1 define

p;=log = (2.3)
X—(j—Dio

Clearly, (p;) is a stationary sequence. Moreover, from
X0 = €0ajpX—j
and (2.3) we get
p1<loga; * — logeo;
therefore, by (1.3),
Ep; < oo.

Lemma 2.1 now yields the existence of a random variabsich that almost surely

prt+ 0

£.
But p1+ --- 4 p; =l0gx_j;, — logxo, therefore almost surely

09%jy ¢, 2.4)
J J‘)OO
On the other handj~tlogx_j;, is distributed identically withj ~%logxo, which
tends to 0 almost surely. Therefore

99x—jio £ ¢, (2.5)
J

By (2.4)—(2.5)¢ =0, i.e., almost surely

gx—jis g,
By stationarity, foreacld =0, ...,ip — 1,
logx_jiy—a

07

which implies that almost surely
logx_jiy—a
jio+d jooo

We see thai—1logx_, tends to 0, as tends tooco along each of the subsequence
n = jigp+ d. Therefore, (2.2) holds.
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Proof of Theorem 1.1 Denote

Vin = Q0€k (M0 + Mk + =+ + Mkn)s Yk = A0Ek Y _ M
n>0

Thn = Z (koai + Mi1ai—1+ -+ + NknGi—n) Xi—i
izn+1
where
Nkn = Z Ajy = Ay €f—iy *** €k—iq—ero—iy - (26)
i14-+ij=n
In [4] we showed that, for akt andn,

Xk = Yin + €kZkn- (2.7)

Moreover,yi, — yx, asn — 00.
All random variables in (2.7) are nonnegative; therefqre y,, for all n and hence
v < xg < 00, i.e., almost surely

Z Nien < 00. (2.8)
n>0
It is easy to check that the sequerigg) is a stationary solution to (1.1). Therefore it
remains to prove that, = y; almost surely. To do this, it suffices to show th;a,t—P> 0,

P . .
asn — oo (here— stands for the convergence in probability).
If all ¢; equal O, theny,, = 0 for all » and there is nothing to prove. Therefore
suppose that;, > 0 for someip > 1. Letg > 1 be any number, for which condition
(1.4) is satisfied. By Lemma 2.2, almost surely

logx— 0 < logg,

hence there exists a randaty, such that, for alk > ng, x_, < ¢". Hence, a random
variableC, defined by

C=supg ’/x_j,
jz1

is almost surely finite.
For allk € Z, denote

Cr = Suqujxk,j.
jz1

By stationarity, allCy are distributed identically witlC. Furthermore, for alk and
J=1,

xXp—j < Crq?. (2.9)
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Now, by definition ofz;, and (2.9),

n n
Zkn = Z anjaifjxkfiz Nkj Z Aj—jXk—i
0

izn+1j=0 j= izn+1l
n

n
<Cion ) M Y aijq' " =Cin Yy mjg’ ™Y aijq'
J=0  i>n+1 j=0 i>n

n
< Ck—n Zaiqi Z g’ "

i>1 j=0

It is well known, that ifb,, andc, are nonnegative numbers,, b, < oo andc, — 0,
thenZ?z0 bjc,—;j — 0. Therefore, by (2.8), almost surely

n—o0

n
Z nqujfn — 0.
j=0

This yieldsz, Y 0, because the sequen@g_,, is bounded in probability, as — oco.
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REZIUME
V. Kazakevi€ius, R. Leipus. Apie ARCH procesu vienati

Siame darb@rodome ARCH ly@iu sprendinio vienaesant iSpildytomsaygoms, kurios yra silpness’
negu kai kuriuose ankstesniuose darbuose.



