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On positive approximations of positive diffusions
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e-mail: vigirdas.mackevicius@mif.vu.lt

Abstract. For positive diffusions, we construct split-step second-order weak approximations preserving
the positivity property. For illustration, we apply the construction to some popular stochastic differential
equations such as Verhulst, CIR, and CKLS equations.
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Introduction. We consider scalar stochastic differential equations (SDEs) of the
form

dXt = µ(Xt )d t + σ(Xt)dBt , X0 = x0, (1)

whereB is a standard Brownian motion. Suppose that the coefficients are such that
the solutionX is positive in the sense thatXt > 0 for all t � 0 if X0 = x0 > 0. In [6],
we used the idea of splitting the equation into the deterministic and stochastic parts to
construct first-order weak approximations that preserve the(a,b)-invariance property
of diffusions. In this note, we develop this idea in order to getsecond-order positive
weak approximations for positive diffusions and give several numerical simulation
examples.

Second-order weak approximations. For our purposes, the Stratonovich of the
equation is more convenient. Thus, instead of (1), we consider equations in the
Stratonovich form

dXt = µ(Xt )d t + σ(Xt) ◦ dBt, X0 = x0 > 0. (2)

For Itô equations, the method can be applied by rewriting them in the Stratonovich
form.

Recall that the a family of processes{Xh, h > 0} is said to be a weak approximation
of the solutionX of ordern on the time interval[0,T ] if, for all t ∈ [0,T ],

Ef (Xh
t ) − Ef (Xt ) = O(hn), h → 0,

for a rather wide class of (test) functionsf . In our setting, we take for simplicity this
class to beC∞

0 (0,∞) (finitary smooth functions on(0,∞)). In this note, we consider
weak approximations of Eq. (2) of the form

Xh
0 = x, Xh

(k+1)h = A(Xh
kh,h,�Bk), k = 0,1,2, . . . ,

where the (increment) functionA(x,h,y), (x,h,y) ∈ (0,∞) × [0,∞) × IR, is such
thatA(x,0,0) = x, and�Bk = B(k+1)h − Bkh. The following conditions in terms of
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an increment functionA (together with some technical boundedness conditions) are
sufficient for the second-orderaccuracy of the corresponding approximation [5]:



A′
h(x̄) = µ(x),

A′
y(x̄) = σ(x),

A′′
yy(x̄) = σσ ′(x),(

2A′′
yh

+ A′′′
yyy

)
(x̄) = (µσ)′(x) + σ(σσ ′)′(x),(

A′′
hh + A′′′

yyh + 1
4A′′′′

yyyy

)
(x̄) = µµ′(x) + 1

2µ(σσ ′)′(x) + 1
2σ(σµ′)′(x)

+ 1
4σ(σ(σσ ′)′)′(x),

(3)

wherex̄ = (x,0,0).
Let now the functionsM(x, t), x > 0, t � 0, andS(x,y), x > 0, y ∈ IR, satis-

fy the equationsM′
t (x, t) = µ(M(x, t)), M(x,0) = x, and S′

y(x,y) = σ(S(x,y)),

S(x,0) = x, respectively. In other words, the processesX̃t := M(x, t) and Xt :=
S(x,Bt) are (exact) solutions of respectively thedeterministic part

X̃t = x +
∫ t

0
µ(X̃s )ds

andstochastic part

Xt = x +
∫ t

0
σ(Xt) ◦ dBt

of Eq. (2). In [6], we checked that the increment functionA(x,h,y) := S(M(x,h),y)

defines a first-order weak approximation of the solution of Eq. (2). Similarly, one can
check that so does the “adjoint” increment functionÃ(x,h,y) := M(S(x,y),h). Our
main result is that:

The average of A and Ã, the increment function

A2(x,h,y) := 1

2

(
S(M(x,h),y

) + M
(
S(x,y),h)

)
, (4)

satisfies Eqs. (3) and thus defines a second-order weak approximation of the solution
of Eq. (2).

Examples. 1) Stochastic Verhulst equation:

dXt = λXt(1− Xt )d t + σXt dBt, X0 = x0 > 0,

or, in the Stratonovich form,

dXt = Xt (α − λXt)d t + σXt ◦ dBt, X0 = x0 > 0,

with α = λ − σ 2/2. In this case,

S(x,y) = xeσy and M(x,h) = x

λα−1x + (1− λα−1x)exp(−αh)
.

For numerical simulation, we have chosen the test functionf (x) = 1/x. It is moti-
vated by the fact that the processYt := 1/Xt satisfies a linear SDE; therefore, we can
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calculate explicitly the expectationEf (Xt) = exp{(σ 2 − λ)t}( 1
x

+ λ
σ2−λ

) − λ
σ2−λ

. In
Fig. 1, we plot the exact values ofEf (Xt ) together with the approximate expectations
obtained by the Euler approximation and first- and second-order approximations de-
fined by the increment functionsA andA2, respectively. Here and in the examples
below, the step sizeh = 0.5 and the number of simulated trajectoriesn = 2000.

2) CIR (Cox–Ingersoll–Ross [3]) equation:

dXt = (a − bXt)d t + σ
√

Xt dBt, X0 = x0 > 0. (5)

Alfonsi [1] constructed and studied several approximations of the CIR equation of
weak order one obtained from some implicit schemes that led to analytical formu-
las. Our approach also leads to analytical formulas. In the Stratonovich form, Eq. (5)
becomes

dXt = (ã − bXt)d t + σ
√

Xt ◦ dBt, X0 = x0 > 0,

with ã = a − σ2

4 . For this equation, we easily calculate

S(x,y) =
(√

x + σ

2
y
)2

and M(x,h) = ã

b
+

(
x − ã

b

)
exp(−bh).

For numerical simulation, we takef (x) = exp(−2x), a = b = σ = 1, andx0 = 0.5.
Then (see, for example, [4], Proposition 6.2.5)

Ef (Xt) =
( et

2et − 1

)2
exp

{
− 1

2et − 1

}
.

Simulation results are given in Fig. 2.
3) CKLS (Chan–Karolyi–Longstaff–Sanders [2]) equation:

dXt = (a − bXt)d t + σXα
t dBt, X0 = x0 > 0,

Fig. 1. Approximation of the stochastic Verhulst equation dXt = λXt (1− Xt)d t + σXt dBt , λ = 1,
σ = 0.8, f (x) = 1

x
; (a)x0 = 2, (b)x0 = 0.2.
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Fig. 2. Approximation of the CIR equation dXt = (a − bXt)d t + σ
√

Xt dBt, a = b = 1, σ = 1,
f (x) = exp(−2x), x0 = 0.5.

with α ∈ (1/2;1). As noted by Alfonsi [1], impliciting the drift or diffusion leads to
analytical formulas of approximations only in the casesα = 1/2 (CIR equation) and
α = 1 (linear equation).

As before, let us first rewrite the equation in the Stratonovich form:

dXt = (a − bXt − cX
β
t )d t + σXα

t ◦ dBt, X0 = x0 > 0,

with β = 2α − 1∈ (0,1), c = ασ2

2 . In this case,

S(x,y) = (
x1−α + (1− α)σy

) 1
1−α+ .

However, the deterministic part cannot be solved explicitly. Fortunately, instead of its
exact solution, we can take its second-orderpositive approximation

M(x,h) =
((

xe−bh + a

b

(
1− e−bh

))1−β − (1− β)ch
) 1

1−β
, h < h0,

with sufficiently smallh0 > 0. The approximation is obtained by splitting the de-
terministic part dXt = (a − bXt − cX

β
t )dt into two equations dXt = −cX

β
t d t and

dXt = (a − bXt)d t with the corresponding solutionsXt = (x1−β − (1 − β)ct)
1

1−β

andXt = xe−bt + a
b
(1− e−bt).

Thus, for the CKLS equation, we also obtain an explicit expression of a second-
order weak approximation given by formula (4).
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REZIUMĖ

V. Mackevičius. Teigiam ↪u difuzij ↪u teigiamos aproksimacijos

Teigiamoms difuzijoms sukonstruotos teigiamos antrosios eil˙es silpnosios aproksimacijos. Naujoji konst-
rukcija iliustruojama taikymu stochastin˙ems diferencialin˙ems Verhulsto, CIR ir CKLS lygtims.


