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On positive approximations of positive diffusions
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Abstract. For positive diffusions, we construct splitegt second-order weak approximations preserving
the positivity property. For illustration, we apply the construction to some popular stochastic differential
equations such as Verhulst, CIR, and CKLS equations.
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Introduction. We consider scalar stochastic differential equations (SDESs) of the
form

dX; = u(X,)dt +o(X,)dB;, Xo=xo, (1)

where B is a standard Brownian motion. Suppose that the coefficients are such that
the solutionX is positive in the sense that, > 0 forall ¢t > 0 if Xg=xp > 0. In[6],
we used the idea of splitting the equation into the deterministic and stochastic parts to
construct first-order weak approximations that preservédhg)-invariance property
of diffusions. In this note, we develop this idea in order to geebnd-order positive
weak approximations for positive diffusions and give several numerical simulation
examples.

Second-order weak approximations. For our purposes, the Stratonovich of the
equation is more convenient. Thus, instead of (1), we consider equations in the
Stratonovich form

dXt:M(Xt)dt+U(Xt)OdBt, X0:x0>0 (2)

For 1t6 equations, the method can be applied by rewriting them in the Stratonovich
form.

Recall that the a family of processgg”, 1 > 0} is said to be a weak approximation
of the solutionX of ordern on the time interval0, T'] if, for all r € [0, T'],

Ef (X" —Ef(X,)=0h"), h—0,

for a rather wide class of (test) functiorfs In our setting, we take for simplicity this
class to beC3°(0, oo) (finitary smooth functions o0, oc)). In this note, we consider
weak approximations of Eq. (2) of the form

Xg=x., X{i1,=AXp.hAB), k=012,

where the (increment) functioA(x, i, y), (x, h, y) € (0,00) x [0, 00) x IR, is such
that A(x, 0,0) = x, and A By = B+1)» — B The following conditions in terms of
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an increment functiom (together with some technical boundedness conditions) are
sufficient for the second-ordaccuracy of the corrg®nding approximation [5]:

A (%) = p(x),
A/y(i) =o0(x),
AT (%) =00’ (x),

1 " =\ / N 3)
(2Ayh+Ayyy)(x)_(M0) x)+o(ca") (x), (
(AZh + A;/yh + %«A/y{/y{yy)(i) =pp(x) + %M(UU/)/(X) + %o(ou’)’(x)

+30(0(00’)) (x),

wherex = (x, 0, 0).
Let now the functionsM(x,7), x > 0,7 > 0, andS(x, y), x > 0, y € R, satis-
fy the equationsM;(x,r) = w(M(x,t)), M(x,0) = x, and S;(x,y) =0o(S(x,y)),

S(x,0) = x, respectively. In other words, the processgs:= M(x,t) and X, :=
S(x, B;) are (exact) solutions of respectively tteterministic part

t
Xi=x +/ pn(Xy)ds
0
andstochastic part

t
Ytzx—i_/U(YI)OdBt
0

of Eq. (2). In [6], we checked that the increment functibfx, , y) := S(M(x, h), y)
defines a first-order weak approximation of the solution of Eq. (2). Similarly, one can
check that so does the “adjoint” increment functidax, i, y) :=M(S(x,y),h). Our
main result is that: _

The average of A and A, the increment function

1
Aalx.hyy) = S(S(MCx h). ) + M(S(x.5). ). (4)

satisfies Egs. (3) and thus defines a second-order weak approximation of the solution
of EQ. (2).
Examples. 1) Stochastic Verhulst equation:

dth)\.Xt(l_Xt)dt—i_UXtdBt, X0=X0>0,
or, in the Stratonovich form,
dXt:Xt(a_)\.Xt)dt—i_UXtOdBt, X0:x0>0,

with & = A — 62/2. In this case,
X
ra~x 4+ (1 — ra1x) exp(—ah)

For numerical simulation, we have chosen the test funcfion = 1/x. It is moti-
vated by the fact that the procegs:= 1/ X, satisfies a linear SDE; therefore, we can

S(x,y)=xe’Y and M(x,h) =
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calculate explicitly the expectatidBf (X,) = exp{(c? — M1}(3 + =) — . I
Fig. 1, we plot the exact values Bff (X;) together with the approximate expectations
obtained by the Euler approximation and first- and second-order approximations de-
fined by the increment functiond and A,, respectively. Here and in the examples
below, the step size = 0.5 and the number of simulated trajectories: 2000.

2) CIR (Cox—Ingersoll-Ross [3]) equation:

dXt:(a_bXt)dt—i_U\/XtdBt, X0:x0>0 (5)

Alfonsi [1] constructed and studied several approximations of the CIR equation of
weak order one obtained from some implicit schemes that led to analytical formu-
las. Our approach also leads to analytical formulas. In the Stratonovich form, Eq. (5)
becomes

dth(Zl_bXt)dt—i_U\/XtOdBt, X0=X0>O,

witha =a — (’72. For this equation, we easily calculate

S(x,y) = (ﬁ+ %y)z and M(x, h) = % n (x _ %) exp(—bh).

For numerical simulation, we takg(x) = exp(—2x), a = b =0 =1, andxg = 0.5.
Then (see, for example, [4], Proposition 6.2.5)

Bf(X0) = <Zefet— 1>2eXp{ B Zefl— 1}'

Simulation results are given in Fig. 2.
3) CKLS (Chan—Karolyi—Longstaff-Sanders [2]) equation:

dth(a_bXt)dt—i_UX;det, X0=x0>0,

Ef(X¢) Ef(X:)

(a) (b)

Fig. 1. Approximation of the stochastic Verhulst equatioh & 1 X, (1 — X;)dr + o X, dB;, A =1,
0=08, f(x)=1; (@)x0 =2, (b)x0=0.2.
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Fig. 2. Approximation of the CIR equatiod = (@ — bX,)dt + o /X,;dB;, a=b=1,0 =1,
f(x) =exp(—2x), xo =0.5.

with @ € (1/2; 1). As noted by Alfonsi [1], impliciting the drift or diffusion leads to
analytical formulas of approximations only in the cases 1/2 (CIR equation) and
a =1 (linear equation).

As before, let us first rewrite the equation in the Stratonovich form:

dX, = (a — bX; —cX’)dt + 60X 0dB,, Xo=1x0>0,

with 8 =20 —1€(0,1),c= % In this case,

1
S(x,y) = (xlf‘x +1- oz)oy)f‘".

However, the deterministic part cannot be solved explicitly. Fortunately, instead of its
exact solution, we can take its second-onutmsitive approximation

a —omy\ 1P w7
S(a—e) T —@=pen)T. h<ho,
with sufficiently smallkg > 0. The approximation is obtained by splitting the de-
terministic part &, = (a — bX; — cX,ﬁ)dt into two equations &, = —cX,ﬁ dr and
1

dX; = (a — bX;)dt with the corresponding solutions, = (x1# — (1 — B)cr)T7
andX, = xe "' + 51— e by,

Thus, for the CKLS equation, we also obtain an explicit expression of a second-
order weak approximation given by formula (4).

M(x,h) = ((xeibh +
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REZIUME
V. Mackevicius. Teigiamu difuzjy teigiamos aproksimacijos

Teigiamoms difuzijoms sukonstruotos teigiamos antrosie@seillpnosios aproksimacijos. Naujoji konst-
rukcija iliustruojama taikymu stochasémnis diferencialiams Verhulsto, CIR ir CKLS lygtims.



