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p-variation of Ornstein–Uhlenbeck type processes*
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e-mail: martynas.manstavicius@mif.vu.lt

Abstract. The p-variation of sample paths of Ornstein–Uhlenbeck type processes is investigated. It is
shown that thep-variation index of such a process is the same as thep-variation index of the driving Lévy
process, provided this process is of unbounded total variation.
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1. Introduction

Assume thatX = {Xt , t � 0} is a real valued Lévy process, i.e., a process with statio-
nary and independent increments, which starts at the origin att = 0 and has almost all
cádlág trajectories. Fix a constantλ > 0 and consider the following stochastic differ-
ential equation

dYu = −λYu du + dXu, u � 0, (1)

which can be understood in the sense of semimartingales (see [6]), since such are Lévy
processes. Multiplying both sides of (1) by eλu and integrating from 0 tot , we easily
obtain the solution as

Yt = e−λtY0 + e−λt

∫ t

0
eλu dXu, (2)

which is called an Ornstein–Uhlenbeck type (OU-type) process, generated byX (see
[7, §17], [2, §15.3]). The stochastic integral in (2) can also be understoodpathwise
(see [1, Thm. 7.14 and Prop. 3.9.1]) in the refinement-Riemann–Stieltjes sense (see [4,
p. 2]) and thus allows applications of several results related to the path properties of
Yt . In fact, we will show that thep-variation properties ofYt are the same as forXt ,
providedXt is of unbounded total variation.

2. Preliminaries and results

Throughout we will fix aT > 0 and will omit it in the notations, since the value of
T will be unimportant. We will say that a processXs,0 � s � T (or, in particular, a
functionf : [0,T ] → R) has a finitep-variation indexv(X) almost surely if

v(X) = inf
{
p > 0: vp(X) < ∞ almost surely

}
(3)
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is finite, where

vp(X) = sup

{m−1∑
k=0

|Xtk+1 − Xtk |p: 0= t0 < t1 < . . . < tm = T ,m = 1,2, . . .

}

is thep-variation ofX. Wheneverp = 1, we have the usual total variation.
Here is the main result of this paper.

THEOREM 1. Let Xt , t � 0 be a real-valued Lévy process of almost surely un-
bounded total variation. Then the p-variation index v(Y) of the corresponding OU-
type process Yt , t � 0 is equal to v(X).

3. Proofs

We begin by proving tw o auxiliary lemmas for real valued functions. Later we will
apply them to the sample paths of an OU-type process.

LEMMA 2. Let f : [a,b] → R (a < b) be a function of bounded total variation.
Then for any function g: [a,b] → R with a finite p-variation index v(g) we have
v(f + g) ∨ 1= v(g) ∨ 1, where x ∨ y = max{x,y}.

Proof. First consider the casev(g) � 1. Clearly,v(g) ∨ 1 = 1 � v(f + g) ∨ 1.
Moreover, for anyp > 1 we havevp(g) < +∞ and

v
1/p
p (f + g) � v

1/p
p (f ) + v

1/p
p (g) < +∞, (4)

sincev
1/p
p (f ) � v1(f ) < +∞ for anyp � 1. And sov(f + g) � p. Lettingp ↓ 1 we

obtainv(f + g) � 1 andv(f + g) ∨ 1= 1.
In the casev(g) > 1 we havev(g)∨1= v(g) and for anyp > v(g) by (4) we obtain

v(f +g) � p. Now takingp = pn = v(g)+1/n and lettingn → ∞ we getv(f +g) �
v(g). If v(f +g) = v(g) we are done; otherwise, there exists ap ∈ [1∨v(f +g),v(g))

such thatvp(f + g) < +∞. Theng = (f + g) − f and

v
1/p
p (g) � v

1/p
p (f + g) + v

1/p
p (f ) < +∞,

a contradiction, sincevp(g) = +∞. Therefore, 1∨ v(f + g) � v(g), and the proof is
completed.

Remark 3. It is obvious that the maximum with 1 cannot be omitted. As an example,
takef (x) = x, g(x) = 1−x,x ∈ [0,1]. Thenv(f ) = v(g) = 1 butv(f +g) = 0, since
f + g ≡ 1.

Let ‖f ‖p := v
1/p
p (f ) + ‖f ‖∞, p ∈ [1,+∞).

LEMMA 4. Let f : [a,b] → R (a < b) be a function of bounded total variation.
Then for any function g: [a,b] → R with the p-variation index v(g) � 1 we have
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v(fg) � v(g). If, in addition, g is of unbounded total variation, i.e., v1(g) = +∞, and
the function 1/f is well-defined and of bounded total variation, then v1(fg) = +∞
and v(fg) = v(g).

Proof. Pick anyε > 0 and consider anyp ∈ (v(g),v(g) + ε). Then, by definition
of v(g), we getvp(g) < +∞. Sincep � 1, applying a result of Krabbe [5] we obtain

‖fg‖[p] � ‖f ‖[p] ‖g‖[p] < +∞,

and sovp(fg) < +∞. Moreover,v(fg) � p < v(g) + ε. Letting ε ↓ 0, we obtain
v(fg) � v(g).

Now suppose thatv1(g) = +∞ andv1(1/f ) < +∞. If the functionfg were of
bounded total variation or of boundedp-variation for somep < v(g) then, applying
the above mentioned result of Krabbe, we would get

‖g‖[q] � ‖1/f ‖[q] ‖fg‖[q] < +∞,

where we takeq = 1 in the former case andq = p in the latter case. But this is a contra-
diction in either case, sincev1(g) = +∞ (applied in casev(g) = 1), andvq(g) = +∞
for any q < v(g) (applied in case 1< v(g)). Therefore,v(fg) � 1 = v(g) in case
v(g) = 1, andv(fg) � p for any p < v(g) in casev(g) > 1. So either way we get
v(fg) � v(g), which completes the proof.

Remark 5. Without the assumptionv1(g) = +∞ the equalityv(fg) = v(g) would
no longer hold, in general, as one can take, for example,f (x) = e−x, g(x) = ex for
anyx ∈ [1,2], so thatfg ≡ 1 andv(fg) = 0< v(f ) = v(g) = 1.

We now proceed to the proof of the main theorem.

Proof of Theorem 1. Consider a Lévy processXt of almost surely unbounded total
variation and a corresponding OU-type processYt which we can write as

Yt = e−λtX0 + e−λt

∫ t

0
eλu dXu = Z

(1)
t + e−λtZ

(2)
t .

Clearly, the function e−λt and the processZ(1)
t are of bounded total variation on any

finite interval[a,b] ⊂ [0,∞). So in order to show thatv(Y) = v(X) almost surely, by
Lemmas 2 and 4, it suffices to show that 1� v(X) = v(Z(2)) almost surely.

Since the functionh(u) = eλu,u ∈ [0,T ], is a continuous function of bounded total
variation and the processXu,u ∈ [0,T ], being a Lévy process is a semimartingale of
boundedp-variation for anyp > 2, by [4, Thm. 4.26] or [3, Thm. II.3.27] we get that
the integral definingZ(2)

t exists in the Riemann–Stieltjes sense and by [4, Cor. 4.28]
or [3, Prop. II.3.32] defines a function of boundedp-variation for anyp > v(X) � 1.
Hence, the inequalityv(Z(2)) � v(X) holds almost surely.

To show thatv(Z(2)) � v(X) consider anyp � 1 such thatvp(X) = +∞ al-
most surely. At least one suchp exists, sinceX is assumed to be of unbounded
total variation. For anyω ∈ � such thatvp(X(ω)) = +∞ consider a sequence of



66 M. Manstavičius

partitions of [0, t], say {πn}∞n=1, such thatvp(X(ω),πn) ↑ ∞, as n → ∞. Denote
πn = {tni : 0= tn0 < tn1 < · · · < tnmn

= t} and�i,nf = f (tni ) − f (tni−1) so that

vp(X(ω),πn) =
mn∑
i=1

∣∣�i,nX(ω)
∣∣p

and

vp(Z(2)(ω),πn) =
mn∑
i=1

∣∣�i,nZ(2)(ω)
∣∣p =

mn∑
i=1

∣∣∣∣
∫ tn

i

tn
i−1

eλu dXu(ω)

∣∣∣∣
p

.

Integration by parts (see [3, Thm. I.4.8]) yields:

�i,nZ
(2)(ω) = eλuXu(ω)

∣∣u=tni
u=tni−1

−
∫ tni

tni−1

Xu(ω)λeλu du

= eλtn
i �i,nX(ω) + Xtn

i−1
(ω)�i,nh −

∫ tni

tni−1

Xu(ω)λeλu du,

whereh(x) = eλx . By the triangle inequality,∣∣�i,nZ
(2)(ω)

∣∣ � eλtn
i

∣∣�i,nX(ω)
∣∣ − |�i,nh|∣∣Xtn

i−1
(ω)

∣∣
− λ(tni − tni−1) sup

tn
i−1�u�tn

i

eλu
∣∣Xu(ω)

∣∣

�
∣∣�i,nX(ω)

∣∣ − 2λeλtn
i (tni − tni−1) sup

tn
i−1�u�tn

i

∣∣Xu(ω)
∣∣,

since |�i,nh| � λ(tni − tn
i−1)suptn

i−1�u�tn
i

eλu. Letting M(ω) = sup0�u�t |Xu(ω)|,
which is finite almost surely, sinceXu,u ∈ [0, t] is regulated, we get, forp � 1 as
above,

mn∑
i=1

∣∣�i,nX(ω)
∣∣p �

mn∑
i=1

(∣∣�i,nZ(2)(ω)
∣∣ + 2λeλt (tni − tni−1)M(ω)

)p

� 2p−1
mn∑
i=1

(∣∣�i,nZ(2)(ω)
∣∣p + (

2λeλt (tni − tni−1)M(ω)
)p

)
.

Since
∑mn

i=1(t
n
i − tn

i−1)
p � maxi (tni − tn

i−1)
p−1 ∑mn

i=1(t
n
i − tn

i−1) � tp, and
vp(X(ω),πn) ↑ +∞, we obtainvp(Z(2)(ω),πn) ↑ +∞, asn → ∞. Thus,vp(Z(2)) =
+∞, so long asvp(X) = +∞. This impliesv(Z(2)) � v(X) almost surely.
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REZIUMĖ

M. Manstavičius. Ornšteino–Ulenbeko tipo proces↪u p-variacija

Straipsnyje nagrin˙ejama Ornšteino–Ulenbeko tipo proces↪u trajektorij↪u p-variacija.↪Irodyta, kad bet kurio
tokio procesoY p-variacijos indeksasv(Y ) sutampa su š

↪
i proces↪a generuojanˇcio Levy procesoX p-

variacijos indeksuv(X), jei X trajektorijos yra beveik tikrai neapr˙ežtos pilnosios variacijos.


