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Abstract. The p-variation of sample paths of Ornstein—Uhlenbeck type processes is investigated. It is
shown that the-variationindex of such a process is the same agthariation index of the driving Lévy
process, provided this process is of unbounded total variation.
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1. Introduction

Assume thalX = {X,, r > 0} is a real valued Lévy process, i.e., a process with statio-
nary and independent increments, which starts at the origia-& and has almost all
cadlag trajectories. Fix a constant- 0 and consider the following stochastic differ-
ential equation

dY, =—AY,du+ dX,, u>=0, (1)

which can be understood in the sense of semimartingales (see [6]), since such are Lévy
processes. Multiplying both sides of (1) b¥*end integrating from 0 to, we easily
obtain the solution as

t
Y, =e MYy +e M /0 e dx,, (2)

which is called an Ornstein—Uhlenbeck type (OU-type) process, generatéd $se

[7, 817], [2, 815.3]). The stochastic integral in (2) can also be undersiathglise

(see [1, Thm. 7.14 and Prop. 3.9.1]) in the refinement-Riemann-Stieltjes sense (see [4,
p. 2]) and thus allows applications of several results related to the path properties of
Y;. In fact, we will show that they-variation properties of; are the same as fof,,
providedX; is of unbounded total variation.

2. Preiminaries and results

Throughout we will fix aT > 0 and will omit it in the notations, since the value of
T will be unimportant. We will say that a proce&s,0<s < T (or, in particular, a
function f: [0, T] — R) has a finitep-variation indexv(X) almost surely if

v(X) =inf{p >0: v,(X) <oo almost surely (3)
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is finite, where

m—1
v,,(X)zsup{ D Xy = Xyl 0=to<n<... <tm=T,m=1,2,...}
k=0

is the p-variation ofX. Wheneverp = 1, we have the usual total variation.
Here is the main result of this paper.

THEOREM 1. Let X;, r > 0 be a real-valued Lévy process of almost surely un-
bounded total variation. Then the p-variation index v(Y) of the corresponding OU-
type process Y;, t > 0 isequal to v(X).

3. Proofs

We begin by proving tw o auxiliary lemmas for real valued functions. Later we will
apply them to the sample paths of an OU-type process.

LEMMA 2. Let f: [a,b] — R (a < b) be a function of bounded total variation.
Then for any function g: [a, b] — R with a finite p-variation index v(g) we have
v(f+g)v1i=v(g) vl wherex Vv y=maxx,y}.

Proof. First consider the case(g) < 1. Clearly,v(g) v1=1<v(f +g) Vv 1.
Moreover, for anyp > 1 we havev,(g) < +o0c and

v/ P(f + ) <vbP(f) + b/ P(g) < 400, (4)

sincev,l,/”(f) <vi(f) < 4ooforanyp > 1. And sov(f + g) < p. Lettingp | 1 we
obtainv(f +g)<landv(f+g)vi=1.

Inthe casa(g) > 1 we havev(g) v 1= v(g) and for anyp > v(g) by (4) we obtain
v(f+g) < p.Nowtakingp = p, = v(g)+1/n and letting: — oo we getv(f +g) <
v(g). If v(f+g) =v(g) we are done; otherwise, there existsa [V v(f+g), v(g))
such that,(f + g) <+o0c. Theng = (f +g) — f and

vy P(9) v (f +8) + vy P(f) < 400,

a contradiction, since, (g) = +oc. Therefore, v v(f + g) > v(g), and the proof is
completed.

Remark 3. Itis obvious that the maximum with 1 cannot be omitted. As an example,
takef(x) =x, gx) =1—x,x €[0,1]. Thenv(f) = v(g) = 1 butv(f +g) =0, since
f+g=1.

Let ([ £, = vy " (f) + I flloor P €1, +00).

LEMMA 4. Let f: [a,b] - R (a < b) be a function of bounded total variation.
Then for any function g: [a, b] — R with the p-variation index v(g) > 1 we have
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v(fg) < v(g). If,inaddition, g isof unbounded total variation, i.e., v1(g) = +o0, and
the function 1/f is well-defined and of bounded total variation, then vy(fg) = 400
and v(fg) =v(g).

Proof. Pick anye > 0 and consider any € (v(g), v(g) + ¢). Then, by definition
of v(g), we getv,(g) < +o0. Sincep > 1, applying a result of Krabbe [5] we obtain

I fgllpy < W fllppy gy < 400,

and sov,(fg) < +oo. Moreover,v(fg) < p < v(g) + ¢. Letting e | 0, we obtain
v(fg) <v(g).

Now suppose that;(g) = +oo andvi(1/f) < +oo. If the function fg were of
bounded total variation or of boundedvariation for somep < v(g) then, applying
the above mentioned result of Krabbe, we would get

gl < WL/ fllggy 1S g llfgy < o0,

where we takg = 1 in the former case anfgl= p in the latter case. But this is a contra-
diction in either case, sinag (g) = +oo (applied in case(g) = 1), andy, (g) = +o0
for any g < v(g) (applied in case k v(g)). Thereforeu(fg) > 1= v(g) in case
v(g) =1, andv(fg) > p for any p < v(g) in casev(g) > 1. So either way we get
v(fg) > v(g), which completes the proof.

Remark 5. Without the assumption; (g) = +oco the equalityv(fg) = v(g) would
no longer hold, in general, as one can take, for examfe) = e™*, g(x) = €* for
anyx € [1,2], sothatfg =1 andv(fg) =0<v(f) =v(g) =1.

We now proceed to the proof of the main theorem.

Proof of Theorem 1. Consider a Lévy process; of almost surely unbounded total
variation and a corresponding OU-type procEswhich we can write as

t
Y, =e MXy+e M / gudx, =zY + ez,
0

Clearly, the function € and the procesZ,(l) are of bounded total variation on any
finite interval[a, b] C [0, o0). So in order to show that(Y) = v(X) almost surely, by
Lemmas 2 and 4, it suffices to show that b (X) = v(Z?) almost surely.

Since the functior (1) = €*, u € [0, T], is a continuous function of bounded total
variation and the proces§,, u € [0, T'], being a Lévy process is a semimartingale of
boundedp-variation for anyp > 2, by [4, Thm. 4.26] or [3, Thm. 11.3.27] we get that
the integral definingzt(z) exists in the Riemann-Stielties sense and by [4, Cor. 4.28]
or [3, Prop. 11.3.32] defines a function of boundeérariation for anyp > v(X) > 1.
Hence, the inequality(Z®) < v(X) holds almost surely.

To show thatv(Z®®) > v(X) consider anyp > 1 such thatv,(X) = +oo al-
most surely. At least one such exists, sinceX is assumed to be of unbounded
total variation. For any» € @ such thatv, (X (w)) = 400 consider a sequence of
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partitions of[0, ], say {m,};° 4, such thatv, (X (»), m,) 1 0o, asn — oo. Denote
m,={t" 0=ty <t <--- < tm, =1} andA; . f = f(') — f(t"_ ;) sothat

1

my
V(X (@), 1) =Y |AinX ()|
i=1
and
mp My t;’ p
(2P @), 1) =) |8 ZP@)|" =) / éudxu(w)‘ .
i=1 i=1!11

Integration by parts (see [3, Thm. 1.4.8]) yields:
tn

8inZ® @) = "X, @)\ Th / " Xy (@)reM du
o

1
= e?‘ti Ai’nX(a)) + thll(a))Ai,nh — / Xy (a)))\e?”” du,
4

whereh(x) = €. By the triangle inequality,

|AinZP ()] > &

Ain X (@)] = 18i nhl| Xn ()]

— A =1y sup €Y|X, (o)

n n
i Susy

> A X (@) =22 (1 — 1) sup | X, (w)

n n
G Susy

’

since |A; ,h| < A1 — tl.’[l)suggll@g,p e, Letting M(w) = SUR<u<: | Xu (@),
which is finite almost surely, sinc&,,u € [0, ¢] is regulated, we get, fop > 1 as
above,

my mp
Z |Ain X (@)]" < Z (|Ai,n 2@ ()| + 2" (1] — tinfl)M(w)>p
i=1 i=1
mp
<or-1 Z (|Ai,nZ(2) (a))|p + (ZXGN(E'n - tzﬂfl)M(w))p)
i=1

Since Y (' — ' P < max (' — fﬁl)pflzgl(ff — ")) < t?, and

v, (X (), 74) 1 +00, We obtain, (Z® (w), 7,) 1 +00, asn — co. Thus,w,(Z?) =
+00, S0 long aw,(X) = +oc. This impliesv(Z®@) > v(X) almost surely.
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REZIUME
M. ManstaviCius. Ornsteino—Ulenbeko tipo proceg-variacija

Straipsnyje nagrigjama Ornsteino—Ulenbeko tipo progesajektoriy p-variacija.lrodyta, kad bet kurio
tokio procesoy p-variacijos indeksas(Y) sutampa sui§proces generuojacio Levy procesaX p-
variacijos indeksw(X), jei X trajektorijos yra beveik tikrai neapttos pilnosios variacijos.



