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Abstract. In this article we are going to analyze market price stability with different
market intensity coefficient and delay argument values. Market price is described as a scalar
differential equation with a delay argument. In order to find solutions for the transcendental
equation we will use method based on Lambert function. We will present examples of the
applications of the method.
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Introduction

Recently there has been published many studies on stability of financial markets,
power distribution systems [9, 4] and prices of food products, such as meat [7], rice
[5], tomatoes [1] or maze [2].

Unstable market prices can have negative consequences for economy, development
and health of the people, especially in developing countries [6], where majority of the
population has to spend a good fraction of their earnings on essential food products.
Therefore increase of product prices or food shortages might severly impact countries
economy.

In the articles [3, 8] price stability system is described by Cobweb model, which
expresses relation between the supply and demand of products. The system equi-
librium is the intersection point between demand and supply curves. The relation
between these two curves can indicate whether the price converges to the equilibrium
point or it becomes unstable. In the article [5] stability of rice prices in Bangladesh
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was analyzed using dynamic programming techniques. In the article [2] model of the
maze prices in Ghana was described by differential equation with a delay argument
and the solution was obtained using numerical methods (dde23 from matlab package).

In this article we will analyze market price stability, when the mathematical model
is described by linear differential equation with a delay argument. The solution of the
transcendental equation will be obtained using Lambert function method.

1 Formulation of the problem

Lets say we have a market price and its equation is described by a mathematical
model – differential equation with a delay argument [7, 3].

p′(t) = γ
(
D
(
p(t)

)
− Sp(t− τ)

)
, (1)

where τ is a delay argument, γ market stability coefficient,D(p(t)) – demand, S(p(t)) –
supply, the variable p(t) is a price dependent on time t.

Using demand D(p(t)) = α+ βp(t), β < 0 and supply S(p(t− τ)) = λ+ δp(t− τ),
δ > 0 in equation (1) we get:

p′(t) = γ
(
α+ βp(t)− λ− δp(t− τ)

)
. (2)

Denoting variables v = γδ, r = −γβ, using them in equation (2) and multiplying
and dividing γ(α− λ) by (δ − β) we get:

p′(t) = γ(α− λ) (δ − β)
(δ − β) − rp(t)− vp(t− τ). (3)

Using market balance price p(e) = (α−λ)
(δ−β) in equation (3) and denoting z(t) =

p(t)− p(e) we get a differential equation with a delay argument:

z′(t) + rz(t) + vz(t− τ) = 0. (4)

We ar going to find transcendental characteristic equation for the equation (4). Then
we denote, that the solution of differential equation can be written as z(t) = Cest,
where C and s ar non-zero numbers:

Csest + Crest + Cves(t−τ) = 0. (5)

When C 6= 0 and est 6= 0, we get a transcendental characteristic equation that
describes linear differential equation (1):

s+ r + ve−sτ = 0. (6)

The function (5) is a solution of the differential equation (1) if and only if the number
s in its expression is the root of the transcendental equation (6).

We will find the roots of the characteristic equation (6) using the Lambert function
method. Divide both sides of the equation by Cest and move ve−τs to the other side
of the equation

s+ r = −ve−τs. (7)
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Multiplying both sides of the equation by τeτs+rτ

(s+ r)τe(s+r)τ = −vτeτr. (8)

Using Lambert function:
(s+ r)τ =W

(
−vτeτr

)
. (9)

Solving the equation for s we get solution of the transcendental characteristic equation
(8):

sk =
1

τ
W

k

(
−vτeτr

)
− r. (10)

Using v = γδ and r = −γβ we get the solution of transcendental equation of the
market price:

s =
1

τ
W

(
−γδτe−γβτ

)
+ γβ. (11)

Since Lambert W function has infinite number of solutions, scalar transcendental
characteristic equation will have infinite number of solutions as well, they can be
written as:

sk =
1

τ
W

k

(
−γδτe−γβτ

)
+ γβ, k = 0,±1,±2, . . . . (12)

Solution of differential equation with a delay argument (1) is asimptotically stable if
all complex numbers sk, k = 0,±1,±2, . . . have negative real parts.

2 Results of calculation

Using expression (12) we will analyze the dependency of coordinates of solutions of the
transcendental equation in complex plane by market stability coefficient parameters.
We will be using Lambert function branch that is equal to zero. The market stability
coefficient was chosen from article [7]. We will analyze stability of poultry market
prices, when the mathematical model is scalar linear differential equation with a delay
argument:

p′(t) = γ
(
375, 2− 166− 0.78p(t)− 1, 78p(t− 0.5)

)
,

φ(t) = 0, 181t2 + 3.4t+ 67, t ∈ [−0.5; 0].
(13)

In Fig. 1 we can see that when delay argument is 0.9 and stability coefficient is between
0.1 and 1.406, the system is asymptotically unstable. When the delay argument is 1,
the system is stable when stablility coefficient is between 0.1 and 1.265 and when delay
argument is 2 the system is stable between 0.1 and 0.632. We can draw a conclusion
that with a smaller delay the system is stable for a longer period of time.

The second example is from article [6]. We will analyze Kalecki’s stationary busi-
ness cycle model, when m = 0.95, n = 0.121.

k′(t) = a
(
k(t)− 1

)
− b

(
k(t− τ)− 1

)
, τ > 0, (14)

where a = m
τ , b = m

τ +n. In the second example we analyzed Kalecki’s business cycle
model with different delay arguments. With chosen values of m and n parameters
0.95 and 0.121 we can draw a conclusion that system is asymptotically stable, when
delay argument is between 0.1 and 0.6 and it becomes unstable when delay argument
is 0.61 (Fig. 2).
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Figure 1: Market price stability with different γ market stability coefficient
values and delays.

Using Lambert function:

(s+ r)τ =W (−vτeτr) (9)

Solving the equation for s we get solution of the transcendental characteristic
equation (8):

sk =
1

τ
W

k
(−vτeτr)− r. (10)

Using v = γδ and r = −γβ we get the solution of transcendental equation of
the market price:

s =
1

τ
W

(
−γδ τe−γβτ

)
+ γβ. (11)

Since Lambert W function has infinite number of solutions, scalar transcendental
characteristic equation will have infinite number of solutions as well, they can
be written as:

sk =
1

τ
W

k

(
−γδ τe−γβτ

)
+ γβ k = 0,±1,±2, . . . . (12)

Solution of differential equation with a delay argument (1) is asimptotically
stable if all complex numbers sk, k = 0,±1,±2, . . . have negative real parts.

2 Results of calculation
Using expression (12) we will analyze the dependency of coordinates of solutions
of the transcendental equation in complex plane by market stability coefficient

3

Fig. 1. Market price stability with different γ market stability coefficient values and delays.

Figure 2: Kalecki‘s model stability with different delay τ arguments

parameters. We will be using Lambert function branch that is equal to zero.
The market stability coefficient was chosen from article [8]. We will analyze
stability of poultry market prices, when the mathematical model is scalar linear
differential equation with a delay argument:

p′ (t) = γ (375, 2− 166− 0.78p (t)− 1, 78p (t− 0.5))

(13)
φ (t) = 0, 181t2 + 3.4t+ 67 t ∈ [−0.5; 0]

In Fig. 1 we can see that when delay argument is 0.9 and stability coefficient is
between 0.1 and 1.406, the system is asymptotically unstable. When the delay
argument is 1, the system is stable when stablility coefficient is between 0.1 and
1.265 and when delay argument is 2 the system is stable between 0.1 and 0.632.
We can draw a conclusion that with a smaller delay the system is stable for a
longer period of time.

The second example is from article [3]. We will analyze Kalecki‘s stationary
business cycle model, when m=0.95 , n=0.121.

k′ (t) = a (k (t)− 1)− b(k (t− τ)− 1) τ > 0 (14)

where a = m
τ , b = m

τ + n. In the second example we analyzed Kalecki‘s
business cycle model with different delay arguments. With chosen values of
m and n parameters 0.95 and 0.121 we can draw a conclusion that system
is asymptotically stable, when delay argument is between 0.1 and 0.6 and it
becomes unstable when delay argument is 0.61.

4

Fig. 2. Kalecki‘s model stability with different delay τ arguments.
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3 Conclusions

Lambert function method was used to analyze market price stability. We analyzed
roots of the transcendental characteristic equation corresponding to the differential
equation with a delay argument. With our method of choice we were able to easily
find paramater values when the system is asymptotically stable. Lambert function
method is suitable for analyzing stability of various markets.

The lower the value of delay argument, then wider range of market stability coef-
ficient values can be selected so that market price is asymptotically stable.

Using different parameters it is possible to analyze stability of Kalecki’s business
model using Lambert function method.
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REZIUMĖ

Rinkos kainos stabilumo tyrimas taikant Lamberto funkciją
I. Jankauskienė, T. Miliūnas
Šiame straipsnyje nagrinėsime rinkos kainos stabilumą, kintant rinkos intensyvumo rodikliui ir vėlav-
imo argumentui. Rinkos kaina aprašome tiesinę skaliarinę diferencialinę lygtį su vėluojančiu argu-
mentu. Taikysime lygtį atitinkančios transcendentinės charakteristinės lygties šaknų radimo metodą,
pagrįsta Lamberto funkcijų panaudojimu. Pateiksime metodo taikymo pavyzdžius.
Raktiniai žodžiai: diferencialinė lygtis; vėlavimo argumentas; Lamberto funkcija; rinkos kaina
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