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1 Introduction and results

Let (P, ‖ · ‖) be an initial set of weighted objects and

π(j) :=
∣∣{p ∈ P : ‖p‖ = j}

∣∣ <∞
for every j = 1, 2, . . . . Examine the set G with the extended weight function ‖ · ‖
of multisets comprised of p ∈ P. Namely, a ∈ G if a = {p1, . . . , pr} and ‖a‖ =
‖p1‖+ · · ·+ ‖pr‖ including the empty multiset ∅ of weight 0. Then

m(n) := |Gn| :=
∣∣{a ∈ G : ‖a‖ = n}

∣∣ =
∑

`(k̄)=n

n∏
j=1

(
π(j) + kj − 1

kj

)
,

where `(k̄) = 1k1 + · · ·+ nkn if k̄ = (k1, . . . , kn) ∈ Nn0 and n ∈ N0 := N ∪ {0}.
In the present paper, we deal with the multisets for which m(n) = qn, where q > 2

is an arbitrary natural number. If q is a prime power, then G may be interpreted as
F∗q [t], the set of monic polynomials over a finite field Fq. Then P is the subset of irre-
ducible polynomials. For an arbitrary such q, there exist combinatorial constructions,
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8 A. Karbonskis, E. Manstavičius

called multisets of necklaces satisfying m(n) = qn (see, [1, Example 2.12, p. 43]). For
multisets, we have the following relations

π(n) =
1

n

∑
d|n

qn/dµ(d), qn =
∑
d|n

dπ(d), (1)

where in the summations, d runs over natural divisors of n and µ(d) stands for the
Möbius function. The equalities are equivalent to the formal power series relation

∞∑
n=0

qnxn =
1

1− qx
=

∞∏
j=1

(
1− xj

)−π(j)
.

Take an a ∈ Gn uniformly at random, that is, sample it with probability νn({a}) =
q−n, n ∈ N and ν0({∅}) = 1. If kj(a) > 0 is the number of elements pi in a ∈ Gn of
weight j, then k̄(a) =

(
k1(a), . . . , kn(a)

)
is the structure vector of a ∈ Gn satisfying

`(k̄(a)) = n. Its distribution is

νn
(
k̄(a) = s̄

)
= 1

{
`(s̄) = n

}
q−n

n∏
j=1

(
π(j) + sj − 1

sj

)
, (2)

where s̄ = (s1, . . . , sn) ∈ Nn0 and 1{·} stands for the indicator function.
We are interested in the distribution with respect to νn of the linear statistics

h(c̄) := h(c̄, a) = c1k1(a) + · · ·+ cnkn(a), c̄ = (c1, . . . , cn) ∈ Rn. (3)

The number of components in a is such a function, namely, it equals k1(a)+· · ·+kn(a).
We refer to [1] for more sophisticated examples.

The present paper is devoted to the variance of h(c̄) which is a sum of dependent
random variables (r.vs) as the relation h(j̄, a) = `(k̄(a)) = n for each a ∈ Gn shows.
Estimating it, we propose an approach to overcome technical obstacles stemming from
dependence.

In the sequel, the expectations and variances with respect to νn will be denoted
by En and Vn while, when the probability space (Ω,F , P ) is not specified, we will
respectively use the notation E and V. The summation indexes i, j, l, k,m,m1 and
m2 will be natural numbers.

Theorem 1 If c̄ ∈ Rn and n ∈ N0, then

Vnh(c̄) =
∑

16jk6n

c2jπ(j)kq−jk −
∑

il+jk>n
il6n,jk6n

cicjπ(i)π(j)q−il−jk. (4)

The sketch of the proof is given at the beginning of Section 2.
It is known [1] that, for a fixed j, the r.v. kj(a) converges in distribution to the

r.v. γj distributed according the negative binomial law NB(π(j), q−j). If {γ1, γ2, . . . }
are mutually independent, define the statistics Yn = c1γ1 + · · · + nγn. We shall see
that the first sum on the right-hand side in (4) is close to VYn; therefore, estimating
Vnh(c̄), we use the following quadratic forms:

Bn(c̄) :=
∑

16jk6n

c2jπ(j)kq−jk, Rn(c̄) =
∑
m6n

mq−2m
(∑
j|m

cjπ(j)
)2

.
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Theorem 2 If n > 2, then

Vnh(c̄) 6 Bn(c̄) +
1

2
Rn(c̄). (5)

The inequality becomes an equality for

cj = c∗j :=
3

π(j)

∑
d|j

dqdµ
( j
d

)
− (2n+ 1)j, 1 6 j 6 n. (6)

Corollary 1 If n > 2 and c̄ 6= 0̄, then

Vnh(c̄) <
3

2
Bn(c̄) <

(
3

2
− q − 1

q
nq−n

)
VYn. (7)

The inequalities are trivial for functions proportional to h(j̄, a) = n if a ∈ Gn,
because of Vnh(j̄) = 0 then. A shift of c̄ eliminates this inconvenience. Observe that
either of Bn(c̄− tj̄) and Rn(c̄− tj̄) attain their minimums in t ∈ R at

t = tc :=
2

(n+ 1)n

∑
m6n

mq−m
∑
j|m

cjπ(j).

Theorem 3 If n > 3, then

Bn(c̄− tcj̄)−
1

3
Rn(c̄− tcj̄) 6 Vnh(c̄) 6 Bn(c̄− tcj̄) +

1

2
Rn(c̄− tcj̄). (8)

Both inequalities are sharp.

Corollary 2 If n > 3 and c̄ 6= αj̄ for every α ∈ R, then
2

3
Bn(c̄− tcj̄) < Vnh(c̄) <

3

2
Bn(c̄− tcj̄).

The proofs of the last two theorems presented in Section 2 are built upon the ideas
and auxiliary results obtained in [4], [2] and [5].

2 Proofs

We firstly recall known facts about random multisets which can be found in [3] and
[1, Section 2.3]. Let γ̄(x) = (γ

(x)
1 , γ

(x)
2 , . . . ) be the infinite dimensional vector of

independent r.vs having the negative binomial distributions NB(π(j), xj), namely,

P (γ
(x)
j = m) =

(
π(j) +m− 1

m

)
(1− xj)π(j)xjm, m = 0, 1, . . .

where 0 < x 6 q−1. Then γ
(q−1)
j = γj which has been introduced in Introduction.

For convenience, we extend k̄(a) to k̄(a) := (k1(a), . . . , kn(a), 0, . . . ) and use infinite
dimensional vectors. Set θ(x) = 1γ

(x)
1 + · · · + nγ

(x)
n + (n + 1)γ

(x)
n+1 + · · · The latter

r.v. is well defined if 0 < x < q−1, since the condition of the Boreli–Cantelli lemma
is satisfied:

∞∑
j=1

P
(
γ

(x)
j 6= 0

)
=

∞∑
j=1

(
1−

(
1− xj

)π(j))
<∞.
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Lemma 1 If s̄ = (s1, . . . , sj , sj+1, . . . ) ∈ N∞0 and 0 < x < q−1, then

νn
(
k̄(a) = s̄

)
= P (γ̄(x) = s̄

∣∣ θ(x) = n).

Proof. Actually, this is Lemma 2.2 in [3] stated there for Fq[t]. The details remain
the same in the more general case. ut

Lemma 2 For a functional Ψ : N∞0 → R such that E|Ψ(γ̄(x))| <∞, we have

EΨ(γ̄(x)) = (1− qx)

(
Ψ(0̄) +

∞∑
n=1

EnΨ
(
k̄(a)

)
qnxn

)
, 0 < x < q−1.

Proof. Apply Lemma 1 in the double averaging as follows:

EΨ(γ̄(x)) =

∞∑
n=0

E
(
Ψ
(
γ̄(x)

)∣∣θ(x) = n
)
P
(
θ(x) = n

)
=

∞∑
n=0

EnΨ
(
k̄(a)

)
P
(
θ(x) = n

)
. ut

Proof of Theorem 1. It is straightforward. Applying the last lemma for the rele-
vant Ψ , one can easily find the needed mixed moments of kj(a), 1 6 j 6 n, and
further, the variance of the linear combination h(a). ut

To prove Theorems 2 and 3, we will apply the following lemmas concerning par-
ticular matrices and quadratic forms.

Lemma 3 Let U = ((uij)), i, j 6 n, be the symmetric matrix with the entries

uij = 1{i+ j > n}(ij)−1/2.

The spectrum of U is the set {1,−1/2, 1/3, . . . , (−1)n−1/n}. The eigenvectors corre-
sponding to the first three eigenvalues are proportional to ēr = (er1, . . . , ern), where
r = 1, 2, 3 and, for j 6 n,

e1j =
√
j, e2j = (3j − 2n− 1)

√
j, e3j =

(
10j2 − 6(2n+ 1)j + 3n2 + 3n+ 2

)√
j.

Proof. This is the byproduct of works [4] and [2]. ut

Afterwards, let ēr, 1 6 r 6 n, be the orthogonal basis of Rn comprised of the
eigenvectors of U and x̄′ means the transposed vector x̄.

Lemma 4 If bm ∈ R and 1 6 m 6 n and n > 2, then

−1

2

∑
16m6n

mb2m 6
∑

16m1,m26n
m1+m2>n

bm1
bm2

6
∑

16m6n

mb2m. (9)

If n > 3 and ∑
m6n

mbm = 0, (10)
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then ∑
16m1,m26n
m1+m2>n

bm1
bm2

6
1

3

∑
16m6n

mb2m. (11)

Moreover, each bound in (9) and (11) are achieved, respectively, for bm = erm/
√
m,

where r = 2, 1, 3 and erm have been defined in Lemma 3.

Proof. Inequalities (9) are seen from Lemma 3 after the substitution bm = xm/
√
m,

m 6 n, since the extreme eigenvalues are 1 and −1/2.
After the same substitution, we further examine the quadratic form with the

matrix U . Condition (10) reckons the subspace of vectors x̄ = (x1, . . . , xn) satisfying
x1 + · · · + xj

√
j + · · · + xn

√
n = x̄ · ē′1 = 0. This subspace is spanned over the first

eigenvector. In other words, under (10), only the form values obtained in the subspace
L ⊂ Rn spanned over the vectors ē2, . . . , ēn count. Hence

max
x̄∈L
‖x̄‖−2x̄Ux̄′ 6 max

26r6n
(−1)r−1/r = 1/3.

Returning to bm, from this we obtain inequality (11). ut

Proof of Theorem 2. After grouping the summands, expression (4) can be rewritten
as follows:

Vnh(c̄) = Bn(c̄)−
∑

m1,m26n
m1+m2>n

(
q−m1

∑
i|m1

ciπ(i)

)(
q−m2

∑
j|m2

cjπ(j)

)
.

Now evidently estimate (5) follows from Lemma 4 with

bm = q−m
∑
j|m

cjπ(j), m 6 n.

Moreover, it becomes an equality if we take cj = c∗j satisfying

q−m
∑
j|m

c∗jπ(j) = 3m− 2n− 1,

which by the Möbius inversion formula and (1) may be rewritten as (6). ut

To prove the first assertion of Corollary 1, it suffices to estimate the inner sum in
Rn(c̄), namely,(∑

j|m

cjπ(j)

)2

6
∑
j|m

c2jπ(j)

j
·
∑
j|m

jπ(j) =
∑
j|m

c2jπ(j)

j
· qm.

Further, using the expression of VYn, we just estimate the remainder:

VYn −Bn(c̄) =
∑
j6n

c2jπ(j)
∑
k>n/j

kq−jk > nq−n
∑
j6n

c2jπ(j)

j

qj

(qj − 1)2
· q

j − 1

qj

> nq−n−1(q − 1)VYn.
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Plugging both estimates into (5), we obtain the first inequality in Corollary 1 with
6 instead of <. In fact, we obtained the strict inequality since Cauchy’s inequality
applied in the last step is strict if c̄ is not proportional to j̄, and in this exceptional
case, Vh(c̄) = 0. ut

Proof of Theorem 3. Observe that Vnh(c̄) = Vn

(
h(c̄) − tn

)
= Vnh(c̄ − tj̄) for

every t ∈ R. Hence the right-hand inequality follows from (5) applied for the shifted
statistics.

To get the lower bound of variance, we combine (4) and (11). We start with

Vnh(c̄− tcj̄) = Bn(c̄− tcj̄)−
∑

m1,m26n
m1+m2>n

b̃m1
b̃m2

,

where
b̃m = q−m

∑
j|m

(cj − tcj)π(j)

and m 6 n. By the definition of tc the latter sequence satisfies condition (10). Hence
by (11), ∑

m1,m26n
m1+m2>n

b̃m1 b̃m2 6
1

3

∑
m6n

mb̃2m =
1

3
Rn(c̄− tcj̄).

This and (4) imply the lower bound. Moreover, the latter is sharp since Lemma 4
assures this by a choice of a particular sequence b̃m, m 6 n. ut
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REZIUMĖ

Vėrinių multiaibių statistikos dispersijos efektyvūs įverčiai
A. Karbonskis, E. Manstavičius
Nagrinėjama tiesinės statistikos, apibrėžtos atsitiktinių vėrinių multiaibėje, dispersija. Gauti tikslūs
viršutinieji ir apatinieji įverčiai.
Raktiniai žodžiai: Turanas–Kubiliaus nelygybė; daugianariai virš baigtinio lauko; priedų funkcija
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