Liet. matem. rink47, spec. n.2007, 351-355

Efficient loop-check for multimodak D45, logic

Adomas BIRSTUNAS (VU)

e-mail: adomas.birstunas@mif.vu.lt

Abstract. We introduce sequent calculus for multi-modal logi®45, which uses efficient loop-check.
Efficiency of the used loop-checkis obtained by using marked modal opexratdrich is used as an alter-
native to sequent with histories ([2,3]). We use inference rulesavitiranches to make all rules invertible

or semi-invertible. We show the maximum height of the constructed derivation tree. Also polynomial space
complexity is proved.

Keywordssequent calculus, multi-modal logie D45, efficient loop-check.

1. Introduction

Multi-modal logic K D45, is a part of the widely use® DI logic, described in [5].
There is known sequent calculus for logid45,, but it uses inefficient (direct) loop-
check. Direct loop-check technique used in sequent calculus requires to check all the
sequents in the current branch after every rule application. It means, that most of the
time is used to compare sequents instead of applying inference rules. The main goal
of the efficient loop-check is to make it work ‘locally’. This can be achieved by using
some properties of the used logic. Basic principle of ‘local’ loop-check is to store
some more information in the sequent, and later, use this information for loop test.
Sequents with histories can be used for this. Such an approach is used in [2,3], where
efficient loop-check for some modal logics is shown. In our work, we use marked
modal operator? as an alternative to histories.

Sequent calculus for multi-modal logik D45, usesrn modal operatorsiy, Oy,
..., O, and has the following rules:

6T > A ¥, T— A 6. U, T — A I A
$Vy.T—>A VD) sggT=Aa @D g5 D
'->¢,A I'—>y, A ' —o¢,¢, A ¢, ' > A
T — &7, A @R r=gvy.a VROTS=ga OB
- A IOl —0,0,0,0;A
LI = A, A (Weak) Dlir — Di®: DiAl @)

(® is empty or only one formuja

DEFINITION 1. Sequent calculus with an axiof, ¢ — A, ¢ and rules(vL),
(VR), (&L), (&R), (—=L), (—=R), (Weak), (O;) we call K D45,.

352 A. BirStunas

Table 1
Calculus Used rules
K D45, (Weak) + (0;)
aBf — K D45, (Qor) + (a0;) + (BO;)
afys — KD4A5, (O%r) + (0% + (BO7) + (yO?) + (507)
af — K D45, (@%r) + (@0f) + (BO})

According to procedures described in [4], we can use sequent cal&U45,
with backward proof search and loop-check to gguent derivability. Unfortunately,
used loop-check takes most of the calculation tinegdnse after every inference rule
application we have to check all the sequents in the current branch. In the next section,
we propose a new sequent calculus which uses very restricted loop-check.

2. Sequent calculusaf — K D459

First of all, we introduce sequent calculus which uses only invertible or semi-invertible
rules. For this reason we use rules wih branches. Such a rule contains several
premises separated by (conclusion is derivable if at least one of the premises is
derivable). After we introduce marked operattfr, which will be used together with
operator;. Marked operator? is used to store information about modal rules appli-
cations. New operatan? let us to introduce sequent calculus which uses 4 different
modal rules instead of th@;). Finally we show that two modal rules (the only those
can be cause of the loops) are redundant and can be removed from the calculus.
Differences in used rules for defined calculus are shown in the Table 1.

DEFINITION 2. Sequent calculus with an axiof, ¢ — A, ¢ and rules(vL),
(VR), (&L), (&R), (—=L), (—R), (Qor), (a;), (BO;) we callap — K D45,.

A—>T1 || O'r—0O1A1 ... || O, = 0,4,
A,01Iq,...,0,0, = I1,01A1, ..., 0,4,
(A,T1 - contains only non modalized atomic formuylas

(Qor)

Ol — ¢, ;A ||...]| [0, = ¢n, ;A SO — .
O;I' > O A (@l) Dif‘_) (BO:)
Qi A=U;¢1,....0i¢m, m>0)

LEmMMA 1. A sequenS is derivable in sequent calculu§ D45, if and only if S is
derivable in sequent calculug3 — K D45,

Proof. In sequent calculuk D45, we can use ruléWeak) only together with
rule (O;) application without loosing derivability. In such a case, r(#éeak) can be
replaced by rul€Cor) if we use sequent derivation tree with branches. Rulegx0;)
and(B0O;) are just two possible cases of the r(i®) if we use sequent derivation tree
with or branches.

Efficient loop-check for multimod& D45, logic 353

DEFINITION 3. Sequent calculus with an axiof, ¢ — A, ¢ and rules(vL),
(VR), (&L), (&R), (L), (=R), (T%0r), (@O?), (BO}), (yO?), (607) we call
afys — KD45!.

A—=T || D1, 07 = 01A1, OJA] ||| O, 03T, = 0, Ay, O A,

n-n n n (D.Or)
A,01T1, 03T, ..., 0,0, O3, — T1, 01A1, O3 AL, ., O A, TR A,

n-n

(A,1 - contains only non modalized atomic formulas

DI, 0T, 0T — ¢, OPA, O A" ||...|| T, IV,00T, 0T — ¢y, 07 A, O A
O, 07— 0A, O A
O0;a=0;¢1,....0i m, DFA:DF¢1,...,DF¢,,,, DFA’:DF¢m+1,...,DF¢k, m>0)
(rule ;) can be applied only iff;ruc; =)

(@0f)

r,r,or, o — . .
0,00, O . . ,
TErOT S (80?) (rule (60;) can be applied only ify; r
IO — ¢, 0P A" ||] T, 007 — ¢, OP A
o — or A’

O A =007¢1,...,07)

o —
o’ —

%=1 609

LEMMA 2. A sequent is derivable in sequent calculugs — K D45, if and only
if S is derivable in sequent calculugdy§ — K D45}

Proof. Rule (O%r) is the same rul¢Tor), it just uses marked operataf. Rules
(xO?) and(y3?) are just two possible cases of the rue;). Rules(80?) and(807)
are just two possible cases of the ry#e;).

DEFINITION 4. Sequent calculus with an axiof, ¢ — A, ¢ and rules(vL),
(VR), (&L), (&R), (—=L), (—R), (O%r), (@O?), (BO?) we callap — K DA5;,.

LEMMA 3. A sequentS is derivable in sequent calculug8y§ — K D45 if and
only if S is derivable in sequent calculugd — K D45}.

Proof. If we get sequens’ =0T — 07 A’ somewhere in the derivation tree for
sequent calculusfy § — K D45;, we can treat it as not derivable and do not proceed
with this branch. Even if sequett is derivable inefy§ — K D45, according to [1],
we can always find another branch bellows” which is derivable. So, ruleg/0?)
and(s0?) are redundant.

Derivation tree construction in sequent calculs— K D45; always terminates,
because after every rule3?) (or (80?)) application we get one more formula modal-
ized with marked operatan?. Marked operatori? cannot become unmarked. So, fi-
nally we get only marked modalized formulas in the sequent, but for such a sequent
rules(aO?), (BO?) cannot be applied.

Marked operator1? is a kind of history, because it stores informatidroat rules
applied bellow. If we get sequent which is not an axiom, and which contains only
marked modalized formulas, we know that some loop exists on that branch.

354 A. BirStunas

3. Complexity

DEFINITION 5. We define length functiofen as follows:
len(¢) =1, if ¢ is propositional variable,

len(—¢) =len(0;¢) =len(07 p) =len(p) + 1,

len(p v) =len(p&) =len(¢p) + len(yr) + 1.

Length of the sequent is sum of formulas lengths.

LEmMMA 4. If sequentS containsk logical operators andn modal operatorsy;,
then the maximum height of the derivation treerfh— K D45} ism - k.

Proof. Any sequent in a derivation tree can contain only subformulas of the initial
sequentS. Every rule(e3?) or (80?7) changes at least one subformula of the shape
0;¢ into O7¢. So, at mosiz times rules«0?), (B0?) can be applied in any derivation
tree branch. Between two rulésO?), (80?) applications at most logical rules can
be applied. Therefore, any branch in a derivation tree do not exceed height

Derivation tree, constructed according to sequent caleydus K D45}, is always
less (or equal) then the one, constructed according to sequent calclds,. So,
at least we get not worse calculus. However, new calculus has one main advantage.
Sequent calculusp — K D45; incorporates loop-check into inference rules. It means,
that there is no need to check other sequents of the current branch. This improvement
makes it to run faster.

Now we propose some lemmas to show space complexity of sequent calutus
K DA45,.

LEMMA 5. Backward proof search in sequent calculy8 — K D45; requires at
most polynomial space.

Proof. Suppose that sequefithas length. Every sequent in a derivation tree con-
tains only subformulas of (including0?¢ for subformulad;¢). Every subformula
has length< 7 and there are: 2 - [different subformulas of. We can give an index
for any subformula of sequerst We need< 2 -/ -1 = 2- [space to store table of
subformulas indexes. Every sequent in the derivation tree can be defined by two 2
length arrays of subformulas indexes (one array for the left side, and one for the right
side of the sequent). According to Lemma 4, height of any branth Therefore, we
need<2-1%2+42.2.1-1? space if we use deep first search algorithm and stack. So,
backward proof search in sequent calcuis— K D45! requires QI%) space.

LEMMA 6. There exist sequent with lengttior which backward proof search in
sequent calculugp — K D45 requiresO(/3) space.

Proof. We define formulag, Fo, ..., F; as follows:
F1=-01(¢1V ¢1) vV O141,
Fo=—=01(—(=01(¢2 vV ¢2) vV O1¢2) V ¢1) V U161,

Efficient loop-check for multimod& D45, logic 355

Fi ==01(—=(=01(... ~(=01(Yx V ¢i) V O1¢) ... V ¢2) vV O1¢2) V ¢1) V D11

FormulaF; 1 is obtained from formuld’; by replacing subformulg ; with a new
subformula—=(=01(¥j4+1V @j+1) V D111).

During derivation tree construction for the sequestF;, we can applay the fol-
lowing rules in the defined order (in buttom-up direction):

(VR), (—R), (@),

(VL), (=L), (VR), (—R), (O%r), (a01}),

(VL), (=L), (VR), (=R), (VL), (=L), (VR), (=R), (@°%0r), («03}),

(VL), (=L), (VR), (=R), ..., (VL),(=L), (VR), (=R), (O%r), (@O?).

So, in this branch there is8(1-4+2)+2-44+2)+... +((k—1) -4+ 2) =
3+4- 20 4 2. (k — 1) =2 k2 + 1 rules applied.

Sequent> F has length = 8- k and derivation tree height is at leastiZ + 1. In
other words, sequent F, derivation tree height is at least %)2 +1, and maximum

height is Q/2). According to Lemma 5, we use(Q space to store one sequent in the
stack, and, therefore, we us&/€) space for sequent- F, derivation.

4, Conclusion

In this paper, we introduce sequent calcuty$ — K D45, for multi-modal logic
K D45, which uses efficient loop-check. Instead of using sequents with histories [2,
3], we use marked modal operataf. For any sequent new sequent calculus con-
structs equal or smaller derivation tree. However, the main advantage of sequent cal-
culusap — K DA5; is very restricted loop-check. During derivation tree construction
we do not need to check other sequents of the current branch. This makes decision
algorithm to run extremely faster.

Besides, we show the maximum height of the derivation tree and demonstrate that
sequent calculusp — K D45 requires polynomial (@3)) space.

References

1. A. Birstunas, Efficient loop-check for KD45 logicith. Math. J, 46(1), 1-12 (2006).

2. A. Heuerding, M. Seyfried and H. Zimmermann, Efficient loop-check for backward proof search in
some non-classical propositional logics, in: P. Mili, U. Moscato, D. Mundici, M. Ornaghi (Eds.),
Tableaux 96LNCS1071 (1996), pp. 210-225.

3. M. Mouri, Constructing counter-models for modal logic K4 from refutation tr&esl. Section of
Logic, 31(2), 81-90 (2002).

4. N. Nide and S. Takata, Deducton systems for BDI logic using sequent calculBe@mAAMAS’'02
(2002), pp. 928-935.

5. M. WooldridgeReasoning about Rational Agentéie MIT Press (2000).

REZIUME
A. Birstunas. Efektyvuscikly radimas multimodalinei K D45, logikai

Darbe pateiktas sekvencinis skiavimas multimodaliniai logikak D45, kuris naudoja efektyy cikly
radimo mechanizin Taip pat yra parodytas sekvencinio skavimoaS — K D45, maksimalus iSvedimo
medzio aukstis ir sugtingumas atminties atzvilgiu.

