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Abstract. Paper deals with statistical classification of spatial data as a part of widely applicable statistical
approach to pattern recognition. Error rates in supervised classification of Gaussian random field observa-
tion into one of two populations specified by different constant means and common stationary geometric
anisotropic covariance are considered. Formula for the exact Bayesian error rate is derived. The influence
of the ratio of anisotropy to the error rates is evaluated numerically for the case of complete parametric
certainty.
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Introduction

The extension of classical statistical classification techniques in spatial data analysis
is a problem of practical interest. Supervised statistical classification sometimes called
discriminant analysis (DA) (see, e.g., McLachlan, [4]) traditionally assumes that ob-
servations to be classified and classified observations from training sample are inde-
pendent. However, in practical situations with spatially distributed data this is usually
not the case. Data that are close together in space, are likely to be correlated. Thus, to
include spatial dependencies in the classification problem is very important.

When populations are completely specified (case of complete parametric certainty),
an optimal classification rule in the sense of minimum misclassification probability is
the Bayesian classification rule (BCR) (Anderson [1]). Switzer [5]) was the first to
treat classification of spatial data, a work that was expended by Mardia [3]. However,
neither of these authors analysed the error rate of classification.

In this paper we derived formula for Bayes error rate assuming that training sample
observations and an observation to be classified are spatially correlated.

1. Statistical models for spatial population

In this paper, we consider the performances of BCR and plug-in BCR with parameters
estimators from training sample.

Suppose that observation to be classified and training sample are considered as
observations of a Gaussian random field{Z(s): s ∈ D ⊂ Rm}.

The model ofZ(s) in population�l is

Z(s) = µl + ε(s).
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µl – unknown constant mean (l = 1,2). The error term is generated by zero-mean
stationary Gaussian random field{ε(s): s ∈ D} with covariance function defined by
model for alls,u ∈ D, cov{ε(s), ε(u)} = C(s − u), whereC() is the covariance func-
tion of known parametric structure.

Geostatistians usually use semivariogram as measure of spatial variation instead of
covariance. On the assumption of stationarity the semivariogram is defined as:γ (h) =
C(0) − C(h).

There are three common used parameters of the stationary and isotropic semivar-
iogram. If lim|h|→∞ γ (| h |) = γ∞ < ∞ , thenγ∞ is called sill of semivariogram..
The nugget effect shows the pure random variation in population density or it may be
associated with sampling error. Ifγ (| h |) → θ0 > 0 when| h |→ 0, thenθ0 is called
nugget effect. The third parameter is the range of influence parameter, that defines the
distance within which observations are correlated.

In many applications are found empirical evidence of directional effects in the
covariance structure. The simplest way to deal with is by introducing geometric
anisotropy into the assumed covariance structure. Geometric anisotropy means that
models of the covariances (or semivariograms) have the same nugget, sill but different
ranges in to perpendicular directions (Wackernagel, [6]).

Geometric anisotropy means that the correlation is stronger in one direction than
it is in the other directions. If one plots the directional ranges in 2D case they would
fall on the edge of an ellipse, where major and minor axes of ellipse correspond to the
largest and shortest ranges of directional semivariograms.

Algebraically, it adds to the isotropic model two more parameters: the anisotropy
angle j and anisotropy ratio

λ = Rangemax

Rangemin
> 1. (1)

In this paper we restrict our attention to the nuggetless model of covariance, i.e.,
C(h) = σ 2r(h), whereσ 2 is the variance (sill) andr(h) is the spatial correlation func-
tion.

Procedures of fitting of the geometrically anisotropic semivariogram models to the
environmental data can be easily realised by software system R package Gstat (see
[2]).

2. Bayesian error rate in complete parametric certainty

Consider the problem of classification of the observationZ0 = Z(s0), with s0 ∈ D,
into one of two populations specified above with given training sample T. Training
sample T is specified byT ′ = (T ′

1,T
′
2), whereTl is the vector formed bynl observa-

tions ofZ(s) from �l, l = 1,2. Let n1 + n2 = n.
Denote by R the correlationn × n matrix for vector T and byr0 the vector of

correlations betweenZ0 and T. Since the observationZ0 is correlated with training
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sample, we have to deal with conditional meansµ0
lT and varianceσ 2

0T that are defined
by

µ0
lT = E(Z0/T ;�l) = µl + α′(T − M), l = 1,2 (2)

and

σ 2
0T = V (Z0/T ;�l) = σ 2K, (3)

where

α′ = r ′
0R

−1,M′ = (µ11′
n1,µ21′

n2), (4)

K = 1− r ′
0R

−1r0 (5)

with 1n specified asn vector of ones.
In this chapter we assume all covariance parameters are fixed except anisotropy

ratioλ defined in (1).
Then spatial correlation functionr(h) may be considered as function ofλ and it is

obvious thatK is also the function ofλ, i.e.,K = K(λ).
Under the assumption that the populations are completely specified and for known

prior probabilities of populationsπ1 andπ2 (π1 +π2 = 1) , the Bayesian discriminant
function (BDF) minimizing the probability of misclassification (PMC) is

WT (Z0) =
(
Z0 − 1

2
(µ0

1T + µ0
2T )

)
(µ0

1T − µ0
2T )/σ 2

0T + γ, (6)

whereγ = ln(π1/π2).
Denote byPB the PMC of BCR, usually called Bayesian error rate. Put	 =| µ1 −

µ2 | /σ.

LEMMA 1. Bayesian error rate for BDF defined in(6) is

PB =
2∑

l=1

πl
(Ql),

where

Ql = −	0/2+ (−1)l/	0,

	0 = 	/
√

K.

Proof. Proof of Lemma follows directly from (2)–(6) and definition of PMC (see,
e.g., [4]) and properties of Gaussian distribution [1].

So we can considerPB as the function of anisotropy ratioλ.
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2. Numerical example

As an example we consider the case with D being integer regular 2-dimensional lattice.
We assume that location of observation to be classified iss0 = (3,3) and

D1 = (0,3), (0,2), (1,1), (2,1),

D2 = (4,1), (5,1), (6,2), (6,3).

Here Di is the set of points inD, where training sampleTi is taken,i = 1,2. So
n1 = n2 = 4. Leth′ = (hx,hy ).

Exponential geometric anisotropic correlation functionr(h) with anisotropy angle

φ = π
2 specified byr(h) = exp{−

√
h2

x + λ2h2
y/α} is considered.

Example was considered to evaluate numerically the effect of the anisotropy ratio
on the error rates of classification in case of parametric certainty. With an insignificant
loss of generality the case withπ1 = π2 = 0.5 andα = 2 was considered. Then the

Fig. 1. Sampling points ofT1 (signed by „•“), T2 (signed by „�“) and points (signed „+“)

Table 1. Values ofPB = 
(−	0/2) andη = 
(−	0/2)/
(−	∗
0/2)


(−	0/2) η

λ 	 = 0,5 	 = 1 	 = 2 	 = 0,5 	 = 1 	 = 2

1 0.390024 0.288247 0.131991 1 1 1
2 0.395177 0.297466 0.143799 1.013212 1.031984 1.089459
3 0.395852 0.298681 0.145394 1.014943 1.036200 1.101542
4 0.396114 0.299153 0.146015 1.015614 1.037834 1.106246
5 0.396249 0.299397 0.146338 1.015962 1.038683 1.108693
6 0.396314 0.299514 0.146493 1.016128 1.039090 1.109865
7 0.396343 0.299566 0.146561 1.016202 1.039269 1.110383
8 0.396355 0.299588 0.146590 1.016232 1.039344 1.110599
9 0.396360 0.299596 0.146601 1.016245 1.039374 1.110686
10 0.396362 0.299600 0.146606 1.016250 1.039386 1.110721
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Bayesian error rate is specified by

PB = 
(−	0/2)

.
Denote by
(−	∗

0/2) the Bayes error rate for given sampling design withλ = 1.
Three values 0.5, 1 and 2 of	 were chosen to represent weak, moderate and

strong separation between populations. In Table 1 the values of
(−	0/2) and
η = 
(−	0/2)/
(−	∗

0/2) are presented. The ratioη can be used as relative mea-
sure of the influence or effect of theλ on Bayesian error rate.

The figures in Table 1 show that the effect of anisotropy ratio on Bayesian error rate
is greater when separation between classes is stronger.
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REZIUMĖ

K. Dučinskas, L. Dreižien˙e. Anizotropiškumo santykio↪itaka Gauso lauk↪u klasifikavimo klaidai

Straipsnyje pateikiama stacionari↪u anizotropini↪u Gauso lauk↪u stebėjim ↪u klasifikavimo Bajeso klaidos

išraiska. Skaitmeniškai tiriama jos priklausomyb˙e nuo anizotropiškumo santykio dydžio.


