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Abstract. In this paper the problem of classification of an observation into one of two Gaussian popula-
tions with different means and common variance is considered in the case when equicorrelated training
sample is given. Unknown means and common variance are estimated from training sample and these es-
timators are pluged in the Bayes discriminant function. The maximum likelihood estimators are used. The

approximation of the expected error rate associatéd Bayes plug-in discriminant function is derived.
Numerical analysis of the accuracy of that approximation for various values of correlation is presented.
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I ntroduction

Discriminant analysis (DA) sometimes called supervised classification traditionally
assumes that observations to be classified and observations in training sample are in-
dependent. However, in practical situations with temporally and spatially distributed
data this is usually not the case. Data that are close together in time or space, are
likely to be correlated, at best equicorrelated [4, 5]. Equicorrelation arises naturally
from physical and biological considerations [1, 2]. Thus, to include temporal or spatial
dependencies in the classification problem is very important.

In this paper, we consider the performance of the plug-in linear Bayes discriminant
function (PBDF) when the parameters are estimated from training samples as realiza-
tions of a equicorrelated Gaussian random process. We use the maximum likelihood
(ML) estimators of unknown parameters of means and common variance assuming
that the correlation is known.

1. Themain concepts and definitions
The model ofZ(s) in populationg; is
Z(s) = ,BI’x(s) +e(s), seDCcCI,

wherex (s) is ag x 1 vector of non random regressors whose first element is Basd

aq x 1 vector of parameters =1, 2 and! is index set. The error terfa(s): s € D C

I} is zero-mean stationary spatial Gaussian random process with covariance function
defined by model for alt, u € D

cov{s<s>,s<u>}={gjp it s #u,

if s=u,
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whereo? is constant variance and is the intraclass and the interclass correlation.
Consider the problem of classification of the observa#8e= Z (sg), with so € D, into

one of two populations specified above. Assume that training sample T is also given.
Since the observation® is equicorrelated with observations from training sample, we
have to deal with conditional means and variance

1l (so; )= E(Z°/T; ), ol (0D =V(Z%T; ), =12 (1)

Suppose that we observe the training saniple= (77, 7)), whereT; is then; x 1
vector ofn; observations of (s) from ;,/ =1, 2. ThenT is then x 1 vector, where
n =ny +np. Assume that@ x 1 parameter vectg#’ = (87, 5) ando? are unknown
andp is known.

Let 8 and62 be the estimators gf ando2, respectively, based dfi. Denote the
2q x 1 vector of parameters by’ = (8’, 02) and denote the vector of their estimators
by &’ = (B, 52). Letq, 7 be prior probabilities of2; and$2,.

The plug-in BDF is obtained by replacing the parameters in (1) with their estima-
tors. Then PBDF to the classification problem specified above is

A 1., N N A A
W (2% &) = (2° = Sy + i3 ) afr — ) /68 + . )
where
APy = upr(so: B). 6§ =05 (62,
y =In(w1/m2).

In the considered case the actual error rateéf@?; {) can be rewritten as

2

PV =) " (m®(Qn), (3)

1=1
where® () is the standard normal distribution function, and
(= 3% + A3 (A% — 43,) /68 + v

0=
J @9 — 203, /4,2

, 1=12. (4

DEFINITION 1. The expectation of the actual error rate with respect to the distribu-
tion of T, designated a&,{P (®)}, is called the expected error rate (EER).

Hence the EER for the considered problen¥8fclassification by PBDF is

M~

ET(P(&))zET{ (mq>(Q1))}-

l

Il
N
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2. The proposed approximation
Suppose that the model @fis
T=XB+E,

wherep’ = (81, B5) andE is then-vector of random errors that has multivariate Gaus-
sian distributionV,, (0, o2, R).
The ML estimator of8 and bias adjusted ML estimator of [3] are

B=XTR 1) 1xTR'T, (5)
6%=(T = XB)R™HX - XB)/(n — 2q). (6)

whereR is the coreelation matrix df .
The Mahalanobis distance between conditional distributicg®specified by is

Ag= |(M2T - Mcz)T)/UOT|-
PutRs= (X'R71X)71, po=p/(1— p +np).
Denote the approximation of EER;{ P (®)} by AER.

THEOREM 1. Supposethat observation Z° is classified by PBDF defined in (2) and
let ML estimators of parameters specified in (5), (6) be used. Then the approxi mations
of EER based on Taylor series expansion is

AER = Pp+m¢(—Ao/2—y/Ao)
x {[poX'1, — y1 x xol RglpoX'1, — y1 x x0] + 2y%/(n — 29)}/(2A0),
where Pg is Bayes error and
y1=(A0/2+ y/Ao, Ao/2 — v/ Ao),

xo0 = x(50).

Proof. Taylor series expansion of the actual error rate given by formulas (3) an
d (4) up to the second order derivatives about true values of parameters is used. Tak-
ing the expectation of it by distribution of training samflehe proof is completed.

Remark. In the casepo = 0, the proposed approximation of EER agrees with the
asymptotic approximations of EER for independent Gaussian observations case [5].

The order of the remainder term of the Taylor expansion depends on the sampling
design of the training sample.

3. Numerical illustration and discussions

Numerical examples for comparison and evaluation of the accuracy of the derived ap-
proximations of EER is implemented for the constant meansgie.1 andx(s) = 1.
Thenu(s)=p;,l=12andX =1,, & 1,,.
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Table 1. Values of AER, TER, AER/TER for the case=n, =ng andry =n, =0.5

no=4 no=20
P

AER TER AER/TER AER TER AER/TER

A=0.2 A=0.2
0 0.46265 0.49164 0.94105 0.46067 0.48140 0.95694
0.1 0.46047 0.49027 93922 0.45854 0.47779 0.95970
0.2 0.45805 0.48801 93860 0.45603 0.47252 0.96511
0.3 0.45515 0.48463 93917 0.45301 0.46516 0.97388
0.4 0.45157 0.47944 94187 0.44927 0.45462 0.98923
0.5 0.44697 0.47100 94897 0.44445 0.43898 1.01247
0.6 0.44075 0.45613 96629 0.43795 0.41503 1.05522

A=1 A=1

0 0.31954 0.34720 0.92034 0.31074 0.31100 0.99917
0.1 0.30986 0.33004 93886 0.30133 0.29359 1.02636
0.2 0.29917 0.30482 938147 0.29042 0.27081 1.07242
0.3 0.28661 0.27300 04991 0.27750 0.24280 1.14292
0.4 0.27142 0.23424 15875 0.26188 0.20800 1.25899
0.5 0.25250 0.18784 34425 0.24245 0.16456 1.47338
0.6 0.22803 0.13253 12056 0.21744 0.11128 1.95401

The Mahalanobis distance between marginal distributior&’aé specified by
A= (B~ p2)/o|.

With an insignificant loss of generality the cases with= ny = ng, 71 = 0.5.
Computed values of proposed approximation AER is compared with theoretical values
obtained by using the procedures of numerical integration of Maple 9.5. Denote these
theoretical values by TER.

The values of AER, TER and AER/TER are given in Table 1 for various values of
A andp with ng =4 and 20.

From Table 1 it is evident for bothg = 4 and 20, the values of AER and TER
decreases a& andp increases.

The reason of this effect is the increasing of the Mahalanobis distapeehen A
andp increases.

It is also evident from Table 1 that deviation of AER from TER evaluated by and
ratio AER/TER show the high accuracy ofgposed approximation fok = 0.2 and
A =1 and all selected values pf
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REZIUME

K. Ducinskas, J. Neverdauskaité. Ekvikoreliuoty Gauso stebéjimy diskriminantineanalize

Straipsnyje nagriejamas ekvikoreliuat Gauso stedjimuy klasifikavimo uzdavinys, kai klas skiriasi
tik regresiniais vidurkiais. Pateikta vidugs klasifikavimo klaidos aproksimacija atvejui, kai nezinomi
parametrai vertinami maksimalausetikiumo metodu.



