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Discriminant analysis of the equicorrelated
Gaussian observations
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Abstract. In this paper the problem of classification of an observation into one of two Gaussian popula-
tions with different means and common variance is considered in the case when equicorrelated training
sample is given. Unknown means and common variance are estimated from training sample and these es-
timators are pluged in the Bayes discriminant function. The maximum likelihood estimators are used. The
approximation of the expected error rate associated with Bayes plug-in discriminant function is derived.
Numerical analysis of the accuracy of that approximation for various values of correlation is presented.
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Introduction

Discriminant analysis (DA) sometimes called supervised classification traditionally
assumes that observations to be classified and observations in training sample are in-
dependent. However, in practical situations with temporally and spatially distributed
data this is usually not the case. Data that are close together in time or space, are
likely to be correlated, at best equicorrelated [4, 5]. Equicorrelation arises naturally
from physical and biological considerations [1, 2]. Thus, to include temporal or spatial
dependencies in the classification problem is very important.

In this paper, we consider the performance of the plug-in linear Bayes discriminant
function (PBDF) when the parameters are estimated from training samples as realiza-
tions of a equicorrelated Gaussian random process. We use the maximum likelihood
(ML) estimators of unknown parameters of means and common variance assuming
that the correlation is known.

1. The main concepts and definitions

The model ofZ(s) in population�l is

Z(s) = β ′
l x(s) + ε(s), s ∈ D ⊂ I,

wherex(s) is aq ×1 vector of non random regressors whose first element is 1 andβl is
aq ×1 vector of parameters,l = 1,2 andI is index set. The error term{ε(s): s ∈ D ⊂
I} is zero-mean stationary spatial Gaussian random process with covariance function
defined by model for alls,u ∈ D

cov
{
ε(s), ε(u)

} =
{

σ 2ρ if s �= u,
σ 2 if s = u,
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whereσ 2 is constant variance andρ is the intraclass and the interclass correlation.
Consider the problem of classification of the observationZ0 = Z(s0), with s0 ∈ D, into
one of two populations specified above. Assume that training sample T is also given.
Since the observationZ0 is equicorrelated with observations from training sample, we
have to deal with conditional means and variance

µ0
lT (s0;β) = E(Z0/T ;�l), σ 2

0T (σ 2) = V (Z0/T ;�l), l = 1,2. (1)

Suppose that we observe the training sampleT ′ = (T ′
1,T

′
2), whereTl is thenl × 1

vector ofnl observations ofZ(s) from �l, l = 1,2. ThenT is then × 1 vector, where
n = n1 + n2. Assume that 2q × 1 parameter vectorβ ′ = (β ′

1,β
′
2) andσ 2 are unknown

andρ is known.
Let β̂ andσ̂ 2 be the estimators ofβ andσ 2, respectively, based onT . Denote the

2q × 1 vector of parameters by�′ = (β ′,σ 2) and denote the vector of their estimators
by �̂′ = (β̂ ′, σ̂ 2). Let π1, π2 be prior probabilities of�1 and�2.

The plug-in BDF is obtained by replacing the parameters in (1) with their estima-
tors. Then PBDF to the classification problem specified above is

W(Z0; �̂) =
(
Z0 − 1

2
(µ̂0

lT + µ̂0
2T )

)
(µ̂0

lT − µ̂0
2T )/σ̂ 2

0T + γ, (2)

where

µ̂0
lT = µ0

lT (s0; β̂), σ̂ 2
0T = σ 2

0T (σ̂ 2),

γ = ln(π1/π2).

In the considered case the actual error rate forW(Z0; �̂) can be rewritten as

P (�̂) =
2∑

l=1

(
πl
(Q̂l)

)
, (3)

where
() is the standard normal distribution function, and

Q̂l = (−1)′
(µ0

lT
− 1

2(µ̂0
lT

+ µ̂0
2T

))(µ̂0
lT

− µ̂0
2T

)/σ̂ 2
0T

+ γ√
(µ̂0

1 − µ̂0
2)

2σ 2
0T /(σ̂ 2

0T )2
, l = 1,2. (4)

DEFINITION 1. The expectation of the actual error rate with respect to the distribu-
tion of T , designated asET {P (
̂)}, is called the expected error rate (EER).

Hence the EER for the considered problem ofZ0 classification by PBDF is

ET (P (
̂)) = ET

{ 2∑
l=1

(
πl
(Q̂l)

)}
.
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2. The proposed approximation

Suppose that the model ofT is

T = Xβ + E,

whereβ ′ = (β ′
1,β

′
2) andE is then-vector of random errors that has multivariate Gaus-

sian distributionNn(0,σ 2,R).
The ML estimator ofβ and bias adjusted ML estimator ofσ 2 [3] are

β̂ = (XT R−1X)−1XT R−1T , (5)

σ̂ 2 = (T − Xβ̂)R−1(X − Xβ̂)/(n − 2q). (6)

whereR is the coreelation matrix ofT .
The Mahalanobis distance between conditional distributios ofZ0 specified by is

�0 = ∣∣(µ0
1T − µ0

2T )/σ0T

∣∣.
PutRβ = (X′R−1X)−1,ρ0 = ρ/(1− ρ + nρ).

Denote the approximation of EERET {P (
̂)} by AER.

THEOREM 1. Suppose that observation Z0 is classified by PBDF defined in (2)and
let ML estimators of parameters specified in (5), (6)be used. Then the approximations
of EER based on Taylor series expansion is

AER = PB + π1φ(−�0/2− γ/�0)

× {[ρ0X
′1n − γ1 × x0]′Rβ[ρ0X

′1n − γ1 × x0] + 2γ 2/(n − 2q)
}
/(2�0),

where PB is Bayes error and

γ ′
1 = (�0/2+ γ/�0,�0/2− γ/�0),

x0 = x(s0).

Proof. Taylor series expansion of the actual error rate given by formulas (3) an
d (4) up to the second order derivatives about true values of parameters is used. Tak-

ing the expectation of it by distribution of training sampleT the proof is completed.

Remark. In the caseρ = 0, the proposed approximation of EER agrees with the
asymptotic approximations of EER for independent Gaussian observations case [5].

The order of the remainder term of the Taylor expansion depends on the sampling
design of the training sample.

3. Numerical illustration and discussions

Numerical examples for comparison and evaluation of the accuracy of the derived ap-
proximations of EER is implemented for the constant means, i.e.,q = 1 andx(s) = 1.
Thenµl(s) = βl, l = 1,2 andX = 1n1 ⊕ 1n2.
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Table 1. Values of AER, TER, AER/TER for the casen1 = n2 = n0 andπ1 = π2 = 0.5

n0 = 4 n0 = 20
ρ

AER TER AER/TER AER TER AER/TER

� = 0.2 � = 0.2

0 0.46265 0.49164 0.94105 0.46067 0.48140 0.95694
0.1 0.46047 0.49027 0.93922 0.45854 0.47779 0.95970
0.2 0.45805 0.48801 0.93860 0.45603 0.47252 0.96511
0.3 0.45515 0.48463 0.93917 0.45301 0.46516 0.97388
0.4 0.45157 0.47944 0.94187 0.44927 0.45462 0.98923
0.5 0.44697 0.47100 0.94897 0.44445 0.43898 1.01247
0.6 0.44075 0.45613 0.96629 0.43795 0.41503 1.05522

� = 1 � = 1

0 0.31954 0.34720 0.92034 0.31074 0.31100 0.99917
0.1 0.30986 0.33004 0.93886 0.30133 0.29359 1.02636
0.2 0.29917 0.30482 0.98147 0.29042 0.27081 1.07242
0.3 0.28661 0.27300 1.04991 0.27750 0.24280 1.14292
0.4 0.27142 0.23424 1.15875 0.26188 0.20800 1.25899
0.5 0.25250 0.18784 1.34425 0.24245 0.16456 1.47338
0.6 0.22803 0.13253 1.72056 0.21744 0.11128 1.95401

The Mahalanobis distance between marginal distributions ofZ0 is specified by

� = ∣∣(β1 − β2)/σ
∣∣.

With an insignificant loss of generality the cases withn1 = n2 = n0, π1 = 0.5.
Computed values of proposed approximation AER is compared with theoretical values
obtained by using the procedures of numerical integration of Maple 9.5. Denote these
theoretical values by TER.

The values of AER, TER and AER/TER are given in Table 1 for various values of
� andρ with n0 = 4 and 20.

From Table 1 it is evident for bothn0 = 4 and 20, the values of AER and TER
decreases as� andρ increases.

The reason of this effect is the increasing of the Mahalanobis distance�0 when�

andρ increases.
It is also evident from Table 1 that deviation of AER from TER evaluated by and

ratio AER/TER show the high accuracy of proposed approximation for� = 0.2 and
� = 1 and all selected values ofρ.
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REZIUMĖ

K. Dučinskas, J. Neverdauskaitė. Ekvikoreliuot ↪u Gauso stebėjim ↪u diskriminantinė analizė

Straipsnyje nagrin˙ejamas ekvikoreliuot↪u Gauso steb˙ejim ↪u klasifikavimo uždavinys, kai klas˙es skiriasi

tik regresiniais vidurkiais. Pateikta vidutin˙es klasifikavimo klaidos aproksimacija atvejui, kai nežinomi

parametrai vertinami maksimalaus tik˙etinumo metodu.


