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Testing AR(1) model*
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Abstract. In this paper we investigate a simple AR(1) model by testing a presence of changed segment in
a data. We suggest test statistics based on a behavior of partial sums of residuals.
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1. Introduction

Structural stability of a time series is very important in applied econometrics. Esti-
mates derived from unstable processes can be biased and forecasts lose accuracy. A
considerable attention of testing the parameter constancy of time series have given
Pickard [4], Lee and Park [3] and many others.

The CUSUM method has been utilized for testing a change of a mean, a variance
and other parameters of regression type models, see, e.g., Kulperger [2], Bai [1]and
references therein. Shin [7] established the weak limit of partial sums of residuals of
AR models and investigated various tests for one change alternatives. We investigate
in this paper a simple AR(1) model under changed segment type alternatives. The
paper is organized as follows. Section 2 presents a model under consideration and test
statistics. In Section 3 we study a behavior of test statistics under some alternatives. In
section 4 some simulation results are presented.

2. Model and test statistic

In this paper we consider a simple AR(1) model:

yk = ρyk−1 + ak + ek, k = 1, 2, ..., n, y0 = 0, (1)

wheree1, ..., en are i.i.d. with mean zero and finite varianceσ 2 < ∞, a sequence(ak)

will be specified later. We want to test the null hypothesis

H0: ak = 0 for all k = 1, ..,n

against various type alternatives.
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Let (êk , k = 1, . . . ,n) denote the residuals of model (1) under the null hypothesis.
SetŜ0 = 0, Ŝk = ê1 + · · · + êk , k = 1, . . . ,n. Define the test statistics

T (n;α) = max
1<l<n

1
lα

max
0�k�n−l

∣∣∣Ŝ(k + l) − Ŝ(k) − l

n
Ŝ(n)

∣∣∣,
where 0� α < 1/2. In Račkauskas and Rasten˙e [5] limiting distributions for normal-
ized statisticsn−1/2+ασ−1T (n;α) are established under the null hypothesis.

3. Behavior of test statistics under alternatives

Consider model (1) where|ρ| �= 1. Then T (n;α) can be estimatedT (n;α) �
T1(n;α) − T2(n;α), where

T1(n;α) = max
1<l<n

1

lα
max

0�k�n−l

∣∣∣1− ρ̂

1− ρ

k+l∑
i=k

(ai − ā)

∣∣∣,

T2(n;α) = max
1<l<n

1
lα

max
0�k�n−l

∣∣∣1− ρ̂

1− ρ

k+l∑
i=k

(ei − ē) − ρ − ρ̂

1− ρ
(yk+l − yk − l

n
yn)

∣∣∣,
ρ̂ denotes an estimate ofρ under null,ā = n−1∑n

k=1 ak, ê = n−1∑n
k=1 êk.

By Račkauskas and Rasten˙e [5], Račkauskas and Suquet [6] assuming the condi-
tions

1
n

n∑
i=1

ai = Op(1), (2)

lim
t→∞ tP (|e1| � t1/2−α) = 0 (3)

it follows thatn−1/2+ασ−1T2(n;α) = Op(1). Hence, if under an alternative hypothesis

we haven−1/2+ασ−1T1(n;α)
P−→

n→∞∞, then statisticsT (n;α) are proper for testing.

Next we consider two examples of changed segment alternatives.
Example 1. There existl∗, k∗, 1< l∗, k∗ < n, such that

ak = aIk∗<k�k∗+l∗, k = 1, . . . ,n.

wherea ∈ R,a �= 0. Moreover, we assume thatl∗ → ∞ andl∗/n → 0 asn → ∞. In
this case

T1(n;α) �
∣∣∣1− ρ̂

1− ρ
a

(
1− l∗

n

)
l∗(1−α)

∣∣∣∣ .
Hence, under conditions (2) and (3), we haven−1/2+ασ−1T1(n;α)

P−→
n→∞∞ provided

σ−1|a|l∗(1−α)n−1/2+α → ∞ asn → ∞.

Example 2. There existsl∗, k∗, 1< l∗, k∗ < n, such that

ak = (1− ρ)yk−1Ik∗<k�k∗+l∗.
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Under this alternative, model (1) takes the form

yk =



0, if k = 0
ρyk−1 + ek, if 1� k � k∗, k∗ + l∗ < k � n,

yk−1 + ek, if k∗ < k � k∗ + l∗,

i.e., there exists a segment where AR(1) process is non-stationary. This example is
investigated by simulations.

Fig. 1. Example 1.
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4. Simulations

For different values ofl∗, a, α, ρ we have computed 300 realizations of the test
statistics, wheren is equal to 1000. Residuals were generated from the standard normal
distribution. For thep-values analysis we usep-values discrepancy plots. We compare
the empirical distribution function forp-values with the distribution function of the
truep-values. A difference between the empirical and the true distribution functions
is set ony-axis and an argument of the distribution function onx-axis. For a power
analysis we have presented size-power curves. On thex-axis we have set values of
empiricalp-values distribution function under the null hypothesis whereas on they-

Fig. 2. Example 2.
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axis values of empiricalp-value distribution function under the alternative (empirical
power function).

Example 1. From the Fig. 3 we see that almost in all cases the test is a bit conserva-
tive (in average accept the nullhypothesis too often) except whenα = 2/32, a = 0.5
and a change segment is equal 30%. The right column of plots shows that the power
increases when a changed segment and constanta increases andα is closer to 0 rather
than to 1/2 .

Example 2. From the Fig. 3 we see that the test accept the nullhypothesis too
often. The size-power curves show that the test power decreases whenρ tends to 1 and
change segment decreases. Best results givesα = 1/4.
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REZIUMĖ

I. Rastenė. AR(1) modelio testavimas

Darbe nagrin˙ejamas AR(1) modelio galimas steb˙ejim ↪u segmento pasikeitimas. Pasi¯ulyta testinė statistika,
paremta modelio liekan↪u dalini ↪u sum↪u elgesiu.


