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Testing AR(1) modél
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Abstract. In this paper we investigate a simple AR(1) model by testing a presence of changed segment in
a data. We suggest test statistics based on a behavior of partial sums of residuals.
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1. Introduction

Structural stability of a time series is very important in applied econometrics. Esti-
mates derived from unstable processes can be biased and forecasts lose accuracy. A
considerable attention of testing the parameter constancy of time series have given
Pickard [4], Lee and Park [3] and many others.

The CUSUM method has been utilized for testing a change of a mean, a variance
and other parameters of regression type models, see, e.g., Kulperger [2], Bai [1]and
references therein. Shin [7] established the weak limit of partial sums of residuals of
AR models and investigated various tests for one change alternatives. We investigate
in this paper a simple AR(1) model under changed segment type alternatives. The
paper is organized as follows. Section 2 presents a model under consideration and test
statistics. In Section 3 we study a behavior of test statistics under some alternatives. In
section 4 some simulation results are presented.

2. Modd and test statistic

In this paper we consider a simple AR(1) model:
Yk=pyk—1+ax+e, k=1 2, .., n, y=0, (1)

whereeq, ..., e, are i.i.d. with mean zero and finite variangé < oo, a sequencé)
will be specified later. We want to test the null hypothesis

Hy: ap =0 forall k=1,..,n

against various type alternatives.
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Let (¢x,k=1,...,n) denote the residuals of model (1) under the null hypothesis.
SetSp=0,S8.=e1+---+er, k=1,...,n. Define the test statistics

1 A n [ A
T(n;a)= max— max |Sk+1)—Sk)—-Sn)|,
1<i<n % 0<k<n—I n

where 0< @ < 1/2. In Rackauskas and Rasteff5] limiting distributions for normal-
ized statistics: ~1/2t%¢—1T (n; ) are established under the null hypothesis.

3. Behavior of test statisticsunder alternatives

Consider model (1) wheréo| £ 1. Then T (n; «) can be estimated (n; «a) >
Ti(n; a) — To(n; ), where

1 1 pkH
Ti(n; ) = max — max ‘ a; —a
1 @) L<l<n 1% 0<k<n—1 1—pz(l )

’

i=
~ k41

1 1-p . p=p l
To(n; ) = max — max ‘ e —e)— -V — — ,
2(ni) = max o max 1_p§(l )= T, Okt == 2w

p denotes an estimate pfunder nulla =n=1Y7_ja;, é=n"137_, &.
By Rackauskas and Rasterf5], Ra&kauskas and Suquet [6] assuming the condi-
tions

1 n

=Y ai=0,(), 2
n i=1

lim tP(jer] = 1Y%7*) =0 (3)
=00

it follows thatn =Y/2"%¢ ~1T,(n; &) = 0,,(1). Hence, if under an alternative hypothesis
we haven—Y/2t5 1T, (n: o) —> oo, then statisticsT (n: «) are proper for testing.
n—oo

Next we consider two examples of changed segment alternatives.
Example 1. There exist*, k*, 1 < [*, k* < n, such that

akzal[k*<k<k*+l*, k=1,...,n.

wherea € R, a # 0. Moreover, we assume thidt— oo andi*/n — 0 asn — oc. In
this case

1—-p [*
Ti(n; o) > ‘ pa (1 — —)l*(lf"‘)
1 n

Hence, under conditions (2) and (3), we havé”/2t%6 1T} (n; ) —> oo provided
n—oo

o a|*I-0p—1/2te 5 50 asn — .
Example 2. There exists*, k*, 1 < [*,k* < n, such that

ar =1 — p) yr—1lpx <cxgior 4+
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Under this alternative, model (1) takes the form

0, if k=0
V=1 Pyk—1+er, if 1<k <k* kK*+1"<k<n,
Vi—1+ek, if kK <k <k*+17,

i.e., there exists a segment where AR(1) process is non-stationary. This example is
investigated by simulations.
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Fig. 1. Example 1.
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4, Simulations

For different values of*, a, «, p we have computed 300 realizations of the test
statistics, where is equal to 1000. Residuals were generated from the standard normal
distribution. For thep-values analysis we ugevalues discrepancy plots. We compare
the empirical distribution function fop-values with the distribution function of the
true p-values. A difference between the empirical and the true distribution functions
is set ony-axis and an argument of the distribution functionxo@axis. For a power
analysis we have presented size-power curves. Onvgs we have set values of
empirical p-values distribution function under the null hypothesis whereas on-the
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Fig. 2. Example 2.
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axis values of empiricgb-value distribution function under the alternative (empirical
power function).

Example 1. From the Fig. 3 we see that almost in all cases the test is a bit conserva-
tive (in average accept the nliypothesis too often) except when=2/32, « =0.5
and a change segment is equal 30%. The right column of plots shows that the power
increases when a changed segment and consianteases and is closer to O rather
thanto 42 .

Example 2. From the Fig. 3 we see that the test accept the hyfliothesis too
often. The size-power curves show that the test power decreases\éreas to 1 and
change segment decreases. Best results givet/4.
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REZIUME

|. Rastené. AR(1) modelio testavimas

Darbe nagriejamas AR(1) modelio galimas skjlmuy segmento pasikeitimas. Palgita testire statistika,
paremta modelio liekandaliniy sumy elgesiu.



