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Abstract. In what follows we introduce the recursive approach for calculating statistical moments of dec-
imated realizations. We prove the corollaries referring to recursive calculation and present an example for
any realization of 17 sample.
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1. Introduction

While processing discrete-time signals (sequences) there arises a problem to retrieve
maximal information as well as to reduce the amount of calculations on samples. In
such a case, the data decimation by means of a downsampling operation is used [8].
This is a time-scaling operation that is equivalent to changing the sampling rateFs

of an analogous signal from 1/Ts to 1/2Ts , whereTs is a sampling period and its re-
ciprocal 1/Ts = Fs , i.e., is to decreasing the sampling rate two times. In such a case,
the number of samples to be processed decreases twice, as well. In general, the basic
sampling frequencyFs could be decreased by the fixed integer number of times. It is
known that the decimation process ought to be stopped before the frequency content
of the signal is above the new Nyquist frequencyFN . The sampling rate determina-
tion techniques are proposed for dicrete process control and identification of dynamic
systems [5, 1, 7, 4, 11], as well as for improving spectral resolution while solving a
spectral estimation problem [3, 6, 9, 10]. On the other hand, it is important, first of
all, to calculate simple statistical characteristics of decimated realizations and a basic
non-decimated discrete-time signal. There also arises a problem to reduce the number
of operations needed for calculations of first and second statistical moments, without
storing decimated realizations in a memory of a computer. Here both problems have
been solved, using the recursive approach proposed in the paper.

2. Statement of the problem

Assume that we consider a discrete-time signalU(kTs) ∀ k ∈ 0,N that is obtained by
sampling its continuous-time counterpartU(t) with sampling frequencyFs . Here N is
the general number of samples of the basic signalU(kTs) ∀ k ∈ 0,N under considera-
tion; t is a continuous time variable. Suppose, for simplicity, that N is divisiblen times
by 2, i.e., N= 2n .
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After a multiplex decimation of the realizationu(kTs) ∀k ∈ 0,N, one has the set�
of such sequencesx1(k) ≡ u(kTs) ∀ k ∈ 0,N, x2(k) ≡ u(k2Ts) ∀k ∈ 0,N/2, x3(k) ≡
u(k4Ts) ∀ k ∈ 0,N/4, ..., xn−1(k) ≡ u(knTs/2) ∀k ∈ 0,2N/n, xn(k) ≡ u(knTs) ∀ k ∈
0,N/n of the same signalU(kTs) ∀ k ∈ 0,N. Afterwards, the first and second sta-
tistical moments could be calculated by processing different sequences from the set
�, respectively, using well-known formulas [2]. Two different sequences are finally
obtained containing mean and variance values for each of the above mentioned real-
izations from the set� that have been stored in the memory of a computer.

The aim of the given paper is: firstly, to calculate the abovementioned statistics
without storing decimated sequences in the memory of a computer, secondly, to re-
duce the number of calculations by applying the recursive approach that will use the
information obtained by processing the previous decimated realization from the same
set� in the current operation.

3. Recursive expressions for mean and variance values

In order to work out the recursive expressions for the first and second central order
statistics, let us formulate statements on the calculation of means and variances of the
decimated realizations as well as non-decimated ones.

Corollary 1. The mean of each realizationm(·) from the set� is calculated using
the recursive expression of the form

m(iTs) = i

N + i

{N + 2i

2i
m(2iTs) +

N/(2i)∑
l=1

u
(
iTs(2l − 1)

)}
(1)

∀ i = 1,2,4,8, ...,n/2. Here m(iTs) andm(i2Ts) ∀ i = 1,2,4,8, ...,n/2 are mean
values of the current and previous iterations.

Corollary 2. The variance of each realizationvar(·) from the set� is calculated
using the recursive expression of the form

var(iTs) = i

N + i

{N + 2i

2i
var(2iTs) +

N/(2i)∑
l=1

u̇2(iTs(2l − 1)
)}

(2)

∀ i = 1,2,4,8, ...,n/2. Here

u̇
(
iTs(2l − 1)

) = u
(
iTs(2l − 1)

) − m
(
iTs(2l − 1)

)
(3)

∀ i = 1,2,4,8, ...,n/2. Herevar(iTs) andvar(i2Ts) ∀ i = 1,2,4,8, ...,n/2 are vari-
ance values of the current and previous iterations.

Proof of Corollary 1. Let us describe now the signalu(kTs) ∀ k ∈ 0,N resolving it
into a sum of unit sample sequencesδ(kTs − lTs) such as [8]

u(kTs) =
N∑

l=0

u(lTs)δ
[
Ts(k − l)

]
(4)
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becauseδ(kTs − lTs) is zero everywhere except atk = l, where its value is a unity. The
same could be rewritten as the sum of two sequences

u(kTs) =
N/2∑
l=0

u(l2Ts)δ[Ts(k − 2l)] +
N/2∑
l=0

u(l2Ts)δ
[
Ts(k − 2l − 1)

]
. (5)

On the righthandside of expression (5), the first sequence is

N/2∑
l=0

u(l2Ts)δ
[
Ts(k − 2l)

]

=
N/4∑
l=0

u(l4Ts)δ
[
Ts(k − 4l)

] +
N/4∑
l=0

u(l4Ts)δ
[
Ts(k − 4l − 2)

]
. (6)

On the other hand,

N/4∑
l=0

u(l4Ts)δ
[
Ts(k − 4l)

]

=
N/8∑
l=0

u(l8Ts)δ
[
Ts(k − 8l)

] +
N/8∑
l=0

u(l8Ts)δ
[
Ts(k − 8l − 4)

]
. (7)

By proceeding with this, we can finally obtain

2N/n∑
l=0

u(lnTs/2)δ
[
Ts(k − nl/2)

]

=
N/n∑
l=0

u(lnTs)δ
[
Ts(k − nl)

] +
N/n∑
l=0

u(lnTs)δ
[
Ts(k − nl − n/2)

]
. (8)

It follows from (8) that the mean of the last decimated sequencexn(k) ∀ k ∈ 0,N/n

is

m(nTs) = n

N + n

N/n∑
l=0

u(lnTs), (9)

while that of the previous decimated sequencexn−1(k) ∀ k ∈ 0,2N/n is

m(nTs/2) = n

2N+ n

{N + n

n
m(nTs) +

N/n∑
l=1

u
(
Tsn(l − 1/2)

)}
. (10)

Continuing with this in the reverse order one could obtain the recursive formulas for
calculating means. In view of (5) and (6) for the first-decimated realization and for the
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basic one, those recursive formulas are

m(2Ts) = 2

N + 2

{N + 4

4
m(4Ts) +

N/4∑
l=1

u
(
2Ts(2l − 1)

)}
(11)

and

m(Ts) = 1
N + 1

{N + 2
2

m(2Ts) +
N/2∑
l=1

u
(
Ts(2l − 1)

)}
, (12)

respectively. Thus, the general expression for calculating means is of the form (1).
The proof of the Corollary 2 is similar as that of the Corollary 1.

4. Example

Let us now calculate mean and variance values having any realization of the basic
non-decimated discrete-time signalU(kTs) ∀k ∈ 0,N with N=16 and arbitraryTs .
After decimating this realization, we get the set� of realizations:u(kTs) ∀ k ∈
0,16, u(k2Ts) ∀k ∈ 0,8,u(k4Ts) ∀ k ∈ 0,4,u(k8Ts) ∀k ∈ 0,2. First of all, by sub-
stitutingn=8 in formulas (1), (2), we calculate the mean and variance values of the last
decimated realization:

m(8Ts) = 8

16+ 8

2∑
l=0

u(8lTs) = 1

3

[
u(0) + u(8Ts) + u(16Ts)

]
, (13)

var(8Ts) = 8
16+ 8

2∑
l=0

u̇2(8lTs) = 1
3

[
u̇2(0) + u̇2(8Ts) + u̇2(16Ts)

]
, (14)

respectively. Then the mean and variance values of the second decimated realization
u(k4Ts) ∀ k ∈ 0,4 are calculated according to recursive expressions (1),(2) as follows:

m(4Ts) = 4
16+ 4

{16+ 8
8

m(8Ts) +
2∑

l=1

u
(
4Ts(2l − 1)

)}

= 1
5

[
3m(8Ts) + u(4Ts) + u(12Ts)

]
, (15)

var(4Ts) = 4
16+ 4

{16+ 8
8

var(8Ts) +
2∑

l=1

u̇2(4Ts(2l − 1)
)}

= 1

5

[
3var(8Ts) + u̇2(4Ts) + u̇2(12Ts)

]
. (16)

Here u̇(4Ts) = u(4Ts) − m(4Ts) and u̇(12Ts) = u(12Ts) − m(4Ts). Using the same
expressions (1),(2), we get the mean of the first decimated realizationu(k2Ts)
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∀ k ∈ 0,8

m(2Ts) = 2

16+ 2

{16+ 4

4
m(4Ts) +

4∑
l=1

u
(
2Ts(2l − 1)

)}

= 1

9

[
5m(4Ts) + u(2Ts) + u(6Ts) + u(10Ts) + u(14Ts)

]
(17)

and variance

var(2Ts) = 2

16+ 2

{16+ 4

4
var(4Ts) +

4∑
l=1

u̇2(2Ts(2l − 1)
)}

= 1
9

[
5var(4Ts) + u̇2(2Ts) + u̇2(6Ts) + u̇2(10Ts) + u̇2(14Ts)

]
, (18)

respectively. Herėu(2Ts) = u(2Ts) − m(2Ts), u̇(6Ts) = u(6Ts) − m(2Ts), u̇(10Ts) =
u(10Ts) − m(2Ts) andu̇(14Ts) = u(14Ts) − m(2Ts). Finally, the mean and variance
values of the basic non-decimated realizationu(kTs) ∀ k ∈ 0,16 could be calculated
by the same formulas (1),(2):

m(Ts) = 1

16+ 1

{16+ 2

2
m(2Ts) +

8∑
l=1

u
(
Ts(2l − 1)

)}

= 1
17

[
9m(2Ts) + u(Ts) + u(3Ts) + u(5Ts) + u(7Ts) + u(9Ts)

+ u(11Ts) + u(13Ts) + u(15Ts)
]

(19)

and

var(Ts) = 1
16+ 1

{16+ 2
2

var(2Ts) +
8∑

l=1

u̇2(Ts(2l − 1)
)}

= 1
17

[
9var(2Ts) + u̇2(Ts) + u̇2(3Ts) + u̇2(5Ts) + u̇2(7Ts) + u̇2(9Ts)

+ u̇2(11Ts) + u̇2(13Ts) + u̇2(15Ts)
]
, (20)

respectively. It should be noted that one can calculate the same mean and variance
values by the ordinary formulas according to [2], too. However, recursive calculations
according to the formulas (1), (2) allow us to decrease the number of addition oper-
ations as compared with expressions given in [2], especially, for enough largeN . In
such an example, while calculatingm(4Ts),m(2Ts) andm(Ts) we avoid three, five,
and nine addition operations, respectively. In general, having any realization consist-
ing of 17 samples one needs 28 less operations in comparison with the operations
performed using ordinary formulas. On the other hand, there appears one additional
multiplication operation in each recursive step.
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5. Conclusions

The number of operations for calculating the mean and variance values of decimated
signal realizations could be essentially reduced using recursive formulas (1), (2). In
such a case, it is no need to store the whole set of decimated realizations in the memory
of a computer, only the basic non-decimated realization is required.
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REZIUMĖ

R. Pupeikis. Apie decimuot ↪u sek ↪u statistik ↪u rekurentines išraiškas

Darbe pasi¯ulytos rekurentin˙es išraiškos, skirtos decimuot↪u sek↪u statistiniams momentams skaiˇciuoti.

Pateiktas pavyzdys 17 ataskait↪u realizacijai.


