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Abstract. We consider the mean field Hamiltoni&h, = Ay + £(-) in [2(V), whereV = {x} is a finite
set. Characteristic equations for eigenvalues and expressions for eigenfunctibnaoé obtained. Using
this result, the spectral represetida of the solution of the corresponding ("heat transition") differential
equation is derived.
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1. Introduction

Let V = {x} be a finite set, and |e¥ be the number of elements &f. The mean field
(Curie-Weiss) model iV is given by the symmetric operata¥ ¢square matrixy{y,
acting on functionsy -dimensional vectorsy (-): V — R according to the formula

Hyy (x) =k Ay + £ (x), xeV, 1)

where Ayy = N1 Y cev ¥(x), k is a positive constant and the potentidl) =
{€(x): x € V} consists of real scalars. In this paper, we obtain equations for eigen-
values and derive formulas for eigenfunctions of the Hamiltorfign (Theorem 1).
Theorem 1 is applied to obtain the spectral representation of the solftion to the
("heat transition") differential equation

{ ) — 5 ey (1t y) = u(t,2)) +E @t ), 2
u0,x)=upg(x), t>0,xeV.

(Theorem 6). The Feynman-Kac formula fai, x) is also discussed (Theorem 5).

The Hamiltonian (1) is a simplified modification of the lattice Schrédinger operator
Hy =kAy +£(-) in12(V), V C Z", with the lattice Laplaciam\ y (cf. [3]).

In the case of independent identically distributed random varigtles x € V,
with distribution functionF (s) = P(¢ (x) < s), the spectral problem for the operator
(1) and the asymptotic behavior (&s— oo and: — oco) of the extreme eigenvalues
and the solutiom(z, x) of equation (2) were discussed in [2] (Gaussian distributions),
[4] (exponential distributions) and [1] (continuous distribution functiang)). We
note that, for a continuous(-), the variableg (x), x € V, are all distinct with proba-
bility one. In this paper, we consider the general case of sca(ays x € V.

In Section 1, we study the eigenvalue problempy. Section 2 is devoted to the
discussion of representations of the functidn -).
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2. Spectral problem
We consider the spectral problem
Hyy () =rp(), AeR, ¥(O)={¥&):xeV}eR", (3)
with ¥ () # 0 normed by the conditiod_, . ¥2(x) = 1; here, remembely = |N|.

THEOREM 1. Let

Erv =y = 26Ny (4)
be the variational series of the scalars&(x), x € V, and assume that there are exactly
L > 1 strict inequalitiesin (4):

Skl,v > Skz,v > > SkL,V,

where, without loss of generality, k1 = 1. Set &, v = o0

Then the Hamiltonian 7y has N real eigenvaluesiy vy > Agy = -+ = Ay, y Which
are specified as follows:

(i) for each i =1,2,..., L, there is one eigenvalue A, v in the (open) interval
(&, 1.v. &k,v) satisfying the equation

1 N
== 5
;A—S(x) K ©)

and the corresponding (normed) eigenfunction hasthe form

Vi 00 = Gy —EQ) (Y gy — 0N YE xevs (6)
VEV
(if) foreachi =1,2,..., L, if the multiplicity of &, v in (4) ism; > 2 (i.e, there
is the maximal subset {xf),xg),.. , x5 € V) such that &, v = &(x{") = £(x)
= S(x(l))) then A = &, v is an eigenvalue with multiplicity m; — 1 and theset of
(normed) eigenfunctions associated with A can be chosen as an orthonormal basis of
the (m; — 1)-dimensional subspace (¥ (-) € RY: ¢ (x\) + 9 (x3) +...+ ¢ (x5) =0
and v (x) =0for eachx e V \ {x](_l),xg), ey ,Sif}}

Theorem 1 is proved below.

Remark 2. With notation of part (ii) of Theorem 1, we have thatn, + komy +
-+ kgmp =N andUiL xil),xg), .. x,ﬁl)} V.

Remark 3. SinceHy is a symmetriaV-square matrix, from Theorem 1 we see that
the eigenfunctiongr1(-), ¥2(-), ..., ¥n(-) of Hy form an orthonormal basis of the
N-dimensional vector spad@” .
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Remark 4. From Theorem 1 we obtain that

Ay >y Ay 28y =261y 2 ANy 26Ny,
In addition, ifSifl,V > Si,Va thensi,]_,\/ > )Mi,V > Si,V; meanwhile, iffi,]_,\/ = Si,V;
then)ul-,v = Si,V i=23,...,N).
Proof of Theorem 1. We rewrite (3) in the following form
A—EQ)Y@)=Avy, xeV. (7)

To prove part (i) of the theorem, assume that & (x) for eachx. From (7) we
obtain that

Y Y@ =NAyy =xAyy Z

xeV

KS()

—Avw Avwz (8)

A— S(X)

Assume now thad _ .y ¥ (x) = 0. Sincex # & (x) for eachx, from (7) we see that
¥ (-) =0, i.e., the eigenfunctiott (-) associated with eigenvalueis necessarily zero.
This contradicts the definition of the eigenfunction, therefargy # 0.

Since Ay ¢y # 0, from (8) we obtain the characteristic equation (5) for eigen-
values. By g(1) we denote the left-hand side of (5). Note that, for edchk
1,2,...,L, g(A) > oo asr — &, v £ 0 andg(r) - 0 asr — Foo. There-
fore, iNR \ {&x, v, &k, v, -, &, v} equation (5) has exactly eigenvaluesy, v
(Sk,-,l,v, Sk,-,v), and by (7) the corresponding (normed) eigenfunctipps-) are de-
fined by (6);i =1,2,..., L. Thus part (i) is proved.

To prove part (ii), let us consider the equation (7). Fix 1,2, ..., L and the sub-
set {xf),xg), .. x,ﬁl) € V} with m; > 2 such thatt, v = S(x(l)) = S( (l) =
S(x(l)) If A =&, v, then (7) implies that\yy = 0. Therefore, from (7) we have
thaty(x) = 0 for eachx € V \ {x{”, x5, ..., x4}, Thusy (x{”) +¢(x(”) +.o o+
w(x(’)) = 0. Summarizing, we see thatif v = S(x(l)) = S(x(l) = S(x(l)) W|th
m; > 2, then the eigenspace of the elgenva?lue &,.v is the(ml — 1) -dimensional
subspacdy () € RY: v (i) + y(xd) + ... + w(x(”) =0 andy (x) = O for each
xeV\ {x](_l),xg), .. x,ﬁf}}. l.e., part (i) is proved.

3. Application to evolution systems

Let us consider the evolution system described by the equation (2). Recall that the oper-
atorAyy —«y () (¥ (-): V — R)is a generator of the random watk= {x,: ¢ > 0}

in V with continuous time which stays at any site during the time, distributed exponen-
tially with parametew > 0 and then takes a jump to one of sitedimwith probability
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1/N (a mean field random walk, a totally symmetric random walk). In other words,
the local transition probdlities of the homogeneous random waik are given by the
formula

- - £ Ar +0(Atr), inthe case ofajump
—_ —_ —_ N b 1
P(%iar = y[F =x) = { 1— kAt +0(Af), otherwise, ©)

asAt — 0, forall x e V andy € V. The equation (2) is to describe the evolution
of the system of noninteracting particlesW¥h Each particle moves according to the
random walkx. (diffusion of the system). Additionally, each particle situated atV
splits into two particles at the samewith probability max& (x), 0)At + o(At) and
disappears with probability map<£ (x), 0) At + 0(Ar) during time intervalz; r + Ar)
(branching mechanism of the system). Thén x) is the mean number of particles at
sitex at timer (cf. [6]).

THEOREM 5 (Feynman-Kac formula)Equation (2) has a unique nonnegative so-
lution u(-, -) represented as an integral over paths:

t
u(t,x) =Ex[exp{/ §(Xg)dsluo(x)], 120, x€eV,
0

where the expectation E, istaken with respect to the mean field randomwalk x. which
startsatx € V.

Proof. Using a strong Markovian property and local transition probabilities (9) of
the random walkk., we have that

t+At
u(t + At,x) = E, [ exp| A §(F5)ds Juo(Frsar)]

At t+At

=E.[exp{ [ &(x,)ds}Ez, (exp] / E(Xo)ds fuo(Xiyar))]

0 At
At

=E. [ exp{ A E(Xo)dsu(t, xar)]

=M Wu(t, x) (L — kAt + 0(AD) + 2P0 Y "u(t, y) (%At + O(At))

yeV
=u(t £ t t At t At 4+ O(At
—u(,X)JrNVXE‘;(u(,y)—u(,X)) +&()u(t, x) At + 0(Ar)

asAt — 0. We takeu(z, x) to the left-hand side and divide both sidesAy. Passing
to the limit asAr — 0, we obtain the assertion of Theorem 5.

THEOREM 6 (Spectral representationfhe solution u(-, -) of equation (2) is ex-
panded over the eigenvalues Ay and eigenfunctions v (-) (1 < k < N) of the Hamil-
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tonian Hy =k Ay + £(-), viz

N
u(t, x) =) expitdgy — il (X)W, uo)y, >0, x €V
k=1

(cf. Theorem 1); here (Y, uo)v = Y, oy Vi (x)uo(x) istheinner product of v (-) and
uo(+).

Proof. Since the eigenfunctiong; (), ¥2(-), ..., ¥y () of Hy form an orthonormal
basis ofR", the functionu(z, -) is expanded oveyy(-), viz.

N

u(t,) =Y aOyr()

k=1
for eachr > 0. Substituting this into (2) and noting that the eigenfunctigpé) are
linearly independent, we obtain the equationsdgar):
day(1)
dt

here 1< k < N. This equation has the solutian (t) = c exp{tir,v — tk}, where

cr = (Y, ug)y by calculating the inner product af,(-) andug(:) = vazlclwl(-).
Summarizing, we obtain the assertion of the theorem.

= v —Kar(t), t=0;

For the theory of linear differential equations we refer to, e.g., [5].
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REZIUME
A. Astrauskas. Vidurkiniolauko Hamiltoniano tikriniy reikSmiu uzdavinys

Darbe gautos vidurkinio lauko operatoriaus tikdnmeikSmu charakteringoji lygtis bei tikrini funkcijuy
iSraiskos. Sie rezultatai taikomi tiriant atitinkamos tiesirdiferencialies lygties sprendinio skleidign
tikrinemis funkcijomis.



