Multiconditional probabilities

Remigijus Petras GYLYS (MII)
e-mail: gyliene@ktl.mii.lt

Abstract. We introduce a generalization of (Kolmogorovian) conditional probabilities.
Keywords: multiconditional event, expected values, multiconditional probability.

1. Introduction

In this note we introduce multiconditional events and describe their expected values (which we call multiconditional probabilities) generalizing some results of H.T. Nguyen, I.R. Goodman and E.A. Walker [6] and partially of U. Höhle and S. Weber [1-4,7,8].

2. Multiconditional events

Let B be a Boolean algebra, and let a and f_{0} be elements of B. In [5] (further developed in op.cit.), the "conditional event" " a given f_{0} ", written ($a \| f_{0}$), is defined as the order interval

$$
\left(a \| f_{0}\right)=\left[a \wedge f_{0}, a \vee \neg f_{0}\right]
$$

i.e., the set of all elements of B between $a \wedge f_{0}$ and $a \vee \neg f_{0}$ (which is the same thing as the pair $\left\langle a \wedge f_{0}, a \vee \neg f_{0}\right\rangle$. In this note we propose the notion of "multiconditional events" in a Boolean algebra.

Let B be a Boolean algebra and let $\left\langle f_{0}, \ldots, f_{n-2}\right\rangle$ (with $n \geqslant 2$) be a event of elements of B such that

$$
f_{0} \leqslant \ldots \leqslant f_{n-2} \text { and } a \wedge f_{0}=\ldots=a \wedge f_{n-2}
$$

Then we define the multiconditional event $\left(a \| f_{0}, \ldots, f_{n-2}\right)$ of " a given conditions f_{0}, \ldots, f_{n-2} " as the following isotonic chain:

$$
\left(a \| f_{0}, \ldots, f_{n-2}\right)=\left\langle a \wedge f_{0}, a \vee \neg f_{n-2}, \ldots, a \vee \neg f_{0}\right\rangle
$$

We denote by $B^{\mathbf{n}}$ the set of all isotonic chains $f: \mathbf{n} \rightarrow B$, where \mathbf{n} denotes the sequence of integers: $\mathbf{n}=\{0,1, \ldots, n-1\}$. We provide this set with the point-wise partial ordering: $f \leqslant g \Leftrightarrow f_{0} \leqslant g_{0}, \ldots, f_{n-1} \leqslant g_{n-1}$. Obviously these chains form a bounded lattice, and the lattice-theoretic operations and universal bounds are given by:

$$
\left\langle f_{0}, \ldots, f_{n-1}\right\rangle \wedge\left\langle g_{0}, \ldots, g_{n-1}\right\rangle=\left\langle f_{0} \wedge g_{0}, \ldots, f_{n-1} \wedge g_{n-1}\right\rangle
$$

$$
\begin{gathered}
\left\langle f_{0}, \ldots, f_{n-1}\right\rangle \vee\left\langle g_{0}, \ldots, g_{n-1}\right\rangle=\left\langle f_{0} \vee g_{0}, \ldots, f_{n-1} \vee g_{n-1}\right\rangle, \\
\langle\perp, \ldots, \perp\rangle=\perp \text { and }\langle\top, \ldots, T\rangle=\top,
\end{gathered}
$$

where \perp and \top (in brackets) denote the least element and the largest element in B, respectively. If we identify B with the sublattice $B_{c}^{\mathbf{n}}$ of $B^{\mathbf{n}}$ of constant sequences

$$
B_{c}^{\mathbf{n}}=\{\langle a, \ldots, a\rangle \mid a \in B\}
$$

then B becomes a sublattice of $B^{\mathbf{n}}$.
We denote by $\tilde{B}^{\mathbf{n}}$ the set of all multiconditional events. The following equalities are worth pointing out

$$
\left(a \wedge f_{0} \| f_{0}, \ldots, f_{n-2}\right)=\ldots=\left(a \wedge f_{n-2} \| f_{0}, \ldots, f_{n-2}\right)=\left(a \| f_{0}, \ldots, f_{n-2}\right)
$$

It can be easy checked that chains of $B^{\mathbf{n}}$ are in an one-to-one correspondence to multiconditional events in $\tilde{B}^{\mathbf{n}}$ via

$$
\left\langle g_{0}, g_{1}, \ldots, g_{n-1}\right\rangle=\left(g_{0} \| g_{0} \vee \neg g_{n-1}, \ldots, g_{0} \vee \neg g_{1}\right)
$$

Further, it is easy to see that the set $\tilde{B}^{\mathbf{n}}$ of multiconditional events extends the set B in the following sense:

$$
\begin{aligned}
& (a \| \top, \ldots, \top)=\langle a, \ldots, a\rangle \\
& \left(a \| f_{0}, \ldots, f_{n-2}\right)=\left(b \| g_{0}, \ldots, g_{n-2}\right) \\
& \quad \Leftrightarrow a \wedge f_{0}=b \wedge g_{0}, f_{0}=g_{0}, \ldots, f_{n-2}=g_{n-2}
\end{aligned}
$$

The following natural partial ordering can be defined on $\tilde{B}^{\mathbf{n}}$:

$$
\begin{aligned}
& \left(a \| f_{0}, \ldots, f_{n-2}\right) \leqslant\left(b \| g_{0}, \ldots, g_{n-2}\right) \\
& \quad \Leftrightarrow a \wedge f_{0} \leqslant b \wedge g_{0}, a \vee \neg f_{0} \leqslant b \vee \neg g_{0}, \ldots, a \vee \neg f_{n-2} \leqslant b \vee \neg g_{n-2},
\end{aligned}
$$

which extends the usual entailment relation in B. The following monotonicity properties hold:

$$
\begin{aligned}
& a \leqslant b \Rightarrow\left(a \| f_{0}, \ldots, f_{n-2}\right) \leqslant\left(b \| f_{0}, \ldots, f_{n-2}\right) \\
& f_{0} \leqslant g_{0}, \ldots, f_{n-2} \leqslant g_{n-2}, a \wedge g_{0} \leqslant a \wedge f_{0} \\
& \quad \Rightarrow\left(a \| g_{0}, \ldots, g_{n-2}\right) \leqslant\left(a \| f_{0}, \ldots, f_{n-2}\right) .
\end{aligned}
$$

Furthermore, $\tilde{B}^{\mathbf{n}}$ is a bounded lattice. The lattice operations and universal bounds are given by

$$
\begin{aligned}
& \left(a \| f_{0}, \ldots, f_{n-2}\right) \wedge\left(b \| g_{0}, \ldots, g_{n-2}\right) \\
& \quad=\left(a \wedge f_{0} \wedge b \wedge g_{0} \|\left(a \wedge f_{0} \wedge b \wedge g_{0}\right) \vee\left(\neg a \wedge f_{0}\right) \vee\left(\neg b \wedge g_{0}\right)\right. \\
& \left.\quad \ldots,\left(a \wedge f_{0} \wedge b \wedge g_{0}\right) \vee\left(\neg a \wedge f_{n-2}\right) \vee\left(\neg b \wedge g_{n-2}\right)\right)
\end{aligned}
$$

$\left(a \| f_{0}, \ldots, f_{n-2}\right) \vee\left(b \| g_{0}, \ldots, g_{n-2}\right)$

$$
\begin{aligned}
= & \left(\left(a \wedge f_{0}\right) \vee\left(b \wedge g_{0}\right) \|\left(a \wedge f_{0}\right) \vee\left(b \wedge g_{0}\right) \vee\left(\neg a \wedge f_{0} \wedge \neg b \wedge g_{0}\right),\right. \\
& \left.\ldots,\left(a \wedge f_{0}\right) \vee\left(b \wedge g_{0}\right) \vee\left(\neg a \wedge f_{n-2} \wedge \neg b \wedge g_{n-2}\right)\right), \\
\tilde{\perp}= & (\perp \| \top, \ldots, \top) \text { and } \tilde{\top}=(\top \| \top, \ldots, \top) .
\end{aligned}
$$

If we identify B with the sublattice $\tilde{B}_{c}^{\mathbf{n}}$ of $\tilde{B}^{\mathbf{n}}$ of multiconditional events

$$
\tilde{B}_{c}^{\mathbf{n}}=\{(a \| \top \ldots \top) \mid a \in B\}
$$

then B becomes a sublattice of $\tilde{B}^{\mathbf{n}}$.

3. Multiconditional probabilities

Let P be a probability measure on a Boolean algebra B. If $\left\langle g_{0}, \ldots, g_{n-1}\right\rangle \subseteq B$ is an isotonic chain, then from isotonicity of P it follows that the image $P\left\langle g_{0}, \ldots, g_{n-1}\right\rangle$ of $\left\langle g_{0}, \ldots, g_{n-1}\right\rangle$ under P

$$
P\left\langle g_{0}, \ldots, g_{n-1}\right\rangle=\left\langle P\left(g_{0}\right), \ldots, P\left(g_{n-1}\right)\right\rangle
$$

is an isotonic chain in the real unit interval $[0,1]$ (with the 'natural' lattice structure given by max and min). For $\left(a \| f_{0}, \ldots, f_{n-2}\right) \in \tilde{B}^{\mathbf{n}}$, we have that

$$
\begin{align*}
& P\left(a \| f_{0}, \ldots, f_{n-2}\right)=\left\langle P\left(a \wedge f_{0}\right), P\left(a \vee \neg f_{n-2}\right), \ldots, P\left(a \vee \neg f_{0}\right)\right\rangle \\
& \quad=\left\langle P\left(a \wedge f_{0}\right), P\left(a \wedge f_{0}\right)+1-P\left(f_{n-2}\right), \ldots, P\left(a \wedge f_{0}\right)+1-P\left(f_{0}\right)\right\rangle \tag{1}
\end{align*}
$$

Consider an "expected value" function E on [0, 1], a n-ary function $E:[0,1]^{\mathbf{n}} \rightarrow[0,1]$ satisfying the following axioms: for $r \in[0,1],\left\langle r_{0}, \ldots, r_{n-1}\right\rangle,\left\langle q_{0}, \ldots, q_{n-1}\right\rangle \in[0,1]^{\mathbf{n}}$ (with $r_{0} \leqslant \ldots \leqslant r_{n-1}$ and $q_{0} \leqslant \ldots \leqslant q_{n-1}$),
(i) $E\langle r, \ldots, r\rangle=r$ (idempotency),
(ii) $r_{0} \leqslant q_{0}, \ldots, r_{n-1} \leqslant q_{n-1} \Rightarrow E\left\langle r_{0}, \ldots, r_{n-1}\right\rangle \leqslant E\left\langle q_{0}, \ldots, q_{n-1}\right\rangle$ (isotonicity).

Now we are going to "extend" the probability measure P to the lattice $\tilde{B}^{\text {n }}$ of multiconditional events in the following way:

$$
\begin{aligned}
& \left(a \| f_{0}, \ldots, f_{n-2}\right) \mapsto E\left(P\left(a \| f_{0}, \ldots, f_{n-2}\right)\right) \\
& \quad=E\left\langle P\left(a \wedge f_{0}\right), P\left(a \wedge f_{0}\right)+1-P\left(f_{n-2}\right), \ldots, P\left(a \wedge f_{0}\right)+1-P\left(f_{0}\right)\right\rangle
\end{aligned}
$$

We denote the values of this extension of P as $P_{E}\left(a \mid f_{0}, \ldots, f_{n-2}\right)$ and call it multiconditional probability (of "a given conditions f_{0}, \ldots, f_{n-2} "). Obviously this quantity satisfies the following conditions:
(i) $P_{E}(\perp \mid \top, \ldots, \top)=0$ and $P_{E}(\top \mid \top, \ldots, \top)=1$,
(ii) $\left(a \| f_{0}, \ldots, f_{n-2}\right) \leqslant\left(b \| g_{0}, \ldots, g_{n-2}\right)$

$$
\Rightarrow P_{E}\left(a \mid f_{0}, \ldots, f_{n-2}\right) \leqslant P_{E}\left(b \mid g_{0}, \ldots, g_{n-2}\right)
$$

To motivate the choice of the name "multiconditional probability", consider an expected value function defined by

$$
E_{2, k}\left\langle r_{0}, r_{1}\right\rangle= \begin{cases}\frac{r_{0}}{r_{0}+1-r_{1}} & \text { if }\left\langle r_{0}, r_{1}\right\rangle \neq\langle 0,1\rangle, \\ k & \text { if }\left\langle r_{0}, r_{1}\right\rangle=\langle 0,1\rangle\end{cases}
$$

where k is an arbitrary number in $[0,1]$. From (1) (with $n=2$) it follows that

$$
\begin{aligned}
P_{E_{2, k}}\left(a \mid f_{0}\right) & = \begin{cases}\frac{P\left(a \wedge f_{0}\right)}{P\left(a \wedge f_{0}\right)+1-\left(P\left(a \wedge f_{0}\right)+1-P\left(f_{0}\right)\right)} & \text { if } P\left(f_{0}\right) \neq 0, \\
k & \text { if } P\left(f_{0}\right)=0\end{cases} \\
& = \begin{cases}\frac{P\left(a \wedge f_{0}\right)}{P\left(f_{0}\right)} & \text { if } P\left(f_{0}\right) \neq 0, \\
k & \text { if } P\left(f_{0}\right)=0,\end{cases}
\end{aligned}
$$

which (in the case when $k=1$) is the usual definition of (Kolmogorovian) conditional probability.

For $\left\langle r_{0}, r_{1}, r_{2}\right\rangle \in[0,1]^{3}$ (with $r_{0} \leqslant r_{1} \leqslant r_{2}$) and $k \in[0,1]$, consider

$$
E_{3, k}\left\langle r_{0}, r_{1}, r_{2}\right\rangle= \begin{cases}\frac{r_{0}}{r_{0}+1-\frac{r_{1}}{r_{1}+1-r_{2}}} & \text { if }\left\langle r_{0}, r_{2}\right\rangle \neq\langle 0,1\rangle, \\ k & \text { if }\left\langle r_{0}, r_{2}\right\rangle=\langle 0,1\rangle,\end{cases}
$$

which defines an expected value function from $[0,1]^{3}$ to $[0,1]$. From (1) (with $n=3$) it follows that

$$
P_{E_{3, k}}\left(a \mid f_{0}, f_{1}\right)= \begin{cases}1-\frac{P\left(f_{0}\right)-P\left(a \wedge f_{0}\right)}{P\left(f_{0}\right)-P\left(a \wedge f_{0}\right)\left(P\left(f_{1}\right)-P\left(f_{0}\right)\right)} & \text { if } P\left(f_{0}\right) \neq 0 \\ k & \text { if } P\left(f_{0}\right)=0\end{cases}
$$

(not forgetting the conditions: $f_{0} \leqslant f_{1}$ and $a \wedge f_{0}=a \wedge f_{1}$). This formula can be considered as a generalization of the usual conditional probability.

Next, for $\left\langle r_{0}, r_{1}, r_{2}, r_{3}\right\rangle \in[0,1]^{4}$ (with $r_{0} \leqslant \ldots \leqslant r_{3}$) and $k \in[0,1]$, consider

$$
E_{4, k}\left\langle r_{0}, r_{1}, r_{2}, r_{3}\right\rangle= \begin{cases}\frac{r_{0}}{r_{0}+1-\frac{r_{1}}{r_{1}+1-\frac{r_{2}}{r_{2}+1-r_{3}}}} & \text { iflangle } \left.r_{0}, r_{3}\right\rangle \neq\langle 0,1\rangle, \\ k & \text { if }\left\langle r_{0}, r_{3}\right\rangle=\langle 0,1\rangle .\end{cases}
$$

It is evident that this quantity defines an expected value function from $[0,1]^{4}$ to $[0,1]$. From this we obtain that

$$
\begin{aligned}
& P_{E_{4, k}}\left(a \mid f_{0}, f_{1}, f_{2}\right) \\
& \quad= \begin{cases}1-\frac{P\left(f_{0}\right)-P\left(a \wedge f_{0}\right)}{P\left(f_{0}\right)-P\left(a \wedge f_{0}\right)\left(\left(P\left(f_{1}\right)-P\left(f_{0}\right)\right)\left(1-P\left(f_{2}\right)+P\left(a \wedge f_{0}\right)\right)+P\left(f_{2}\right)-P\left(f_{0}\right)\right)} & \text { if } P\left(f_{0}\right) \neq 0, \\
k & \text { if } P\left(f_{0}\right)=0\end{cases}
\end{aligned}
$$

(with the conditions that $f_{0} \leqslant f_{1} \leqslant f_{2}$ and $a \wedge f_{0}=a \wedge f_{1}=a \wedge f_{2}$), which can be considered as an another (more high level) generalization of the traditional conditional probability.

Similarly, one can consider the case $n=5$ etc.

References

1. U. Höhle, Commutative, residuated l-monoids, in: U. Höhle and E.P. Klement (Eds.), Nonclassical Logics and Their Applications to Fuzzy Subsets, Kluwer Academic Publishers, Boston, Dordrecht (1995), pp. 53-106.
2. U. Höhle, MV-algebra valued filter theory, Questiones Math., 19, 23-46 (1996).
3. U. Höhle, S. Weber, Uncertainty measures, realizations and entropies, in: J. Gontsias, R.P.S. Mahler, H.T. Nguyen (Eds.), Random Sets: Theory and Applications, Springer-Verlag, Heidelberg/Berlin/New York (1997), pp. 259-295.
4. U. Höhle, S. Weber, On conditioning operators, in: U. Höhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets, Kluwer Academic Publishers, Boston/Dordrecht/London(1999), pp. 653-673.
5. B.O. Koopman, The axioms and algebra of intuitive probability, Ann. Math., 41, 269-292 (1940).
6. H.T. Nguyen, I.R. Goodman and E.A. Walker, Conditional Inference and Logic for Intelligent Systems: A Theory of Measure-Free Conditioning, North-Holland, Amsterdam (1991).
7. S. Weber, Conditioning on $M V$-algebras and additive measures, Part I, Fuzzy Sets and Systems, 92, 241-250 (1997).
8. S. Weber, Conditioning on $M V$-algebras and additive measures - further results, in: D. Dubois, H. Prade, E.P. Klement (Eds.), Fuzzy Sets, Logics and Reasoning about Knowledges, Kluwer Academic Publishers, Boston/Dordrecht (1999), pp. 175-199.

REZIUMĖ

R.P. Gylys. Daugiasalyginès tikimybės

Pristatoma ir pailiustruojama pavyzdžiais nauja daugiasąlyginių tikimybių sąvoka.

