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Some remarks on selfnormalization for a simple
spatial autoregressive model
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Abstract. In the paper | continue investigations on the self-normalization of simple autoregressive field
X5 =aX—15 + bX: -1+ & sStarted in [5]. And extend previous results when the variance of the
innovations of the process above are not finite.
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1. Introduction and formulation of results

This paper continues the investigations of the self-normalization for the autoregres-
sive fields on the plane which were started in [5]. In this paper the results for self-
normalization forAR (1) process obtained by Juodis andcRatiskas [4] were gen-
eralized for the autoregressive field on the plane. However the results presented in
[5] were proved under assumption of the the existence of the second moment for the
innovations of the autoregressive field we are working with. Here we give a slight ex-
tention of this result and prove that sufficient condition for our results to hold is that
innovations belong to the domain of attraction of the normal law.

We consider one of the most simple autoregressive fields

Xt,s :athl,s +bXt,sfl+5t,x- (1)

We suppose that thay, g, (¢, s5) € Z? are i.i.d. random variables withy ; € DAN.

DAN here stands for domain of attraction of the normal law. We assume as well
that |a| + |b| < 1. If the second moment for the innovations is finite this condition
guarantees the existence of a stationary solution for (1). However this is not the case
and we will have to investigate process (1) with initial conditiofis, = 0, X, 0=0,

(t,s) €Z2,t>0,s > 0. In this case the process would have the form:

t+s—1  min{k,r—1} k
¢

Xs= 2, 2,

) jbkfje,,j,x,kﬂ, t>0s5>0. (2)
k=0 j=max0,k—s+1}

Let’s define

oo r—1
r r 25+1,2r—25—1
)’(—1,1) = ZZ <S> (S N 1)61 s+ b r s )

r=1s=1
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Set
o2(a,b) = (1—a? —b¥)(L—a—b)2(1+2aby_11)
Finally, let us denoté/,, = (M, 1, M, ») and
D, ={(t,5): (t,5) €Z® 1<t <My, 1<s <My}

(In the sequel, where there will be no confusion we suppress indexsome nota-
tions.) Now our first result can be formulated as follows.

THEOREM 1. If X, ; is defined by (2), random variables ¢, ; arei.i.d., Eg; s =0
&5 € DAN, and min{My, M2} — oo asn — oo, then:

Z(r,x)eD,, Xf»V
2 \1/2
(Z(r,s)eD,, Xt,x)

To explain the meaning of notatiop—1 1) we revisit the case where innova-
tions ¢; ; have finite variances. In this case for integérs/> we denotey, 1,) =
EX; s Xi41y,5+1,, WhereX,  is from (1).

In the paper [2] (see also[1] ) it was shown that

2, N(0,0%(a, b)). 3)

1-a?-p?y2 -1 .
V-11) = e f ab #0,
0, otherwise,
-1/2
Y00 = (A+a+b)A+a-b)(l—-a+b(l—-a—b) "
It is necessary to note that even in the case of infinite second moments for innova-
tions, the limit distribution is still the same.
We will also reformulate the Theorem 2 in [5] with the new conditions for the
innovations. Assume thatd m1 < M1, 1 < my < M are integers (dependent an
too) and such that := Mym* andJ := Mpym;* are integers, we seiy; == m1(i —
1), mp ;= mo(j — 1) and

Djj={{ts): my;+1<1¢
1<i<l/, 1<

<myipr.moj+ 1<t <myji1},
< J.

If we define

Yij= Y Xus

(I,A‘)ED,',_/’
then, sinceD, = U!_, U_; D; ;, clearly we have, ., Xis =311 371 Y-
THEOREM 2. If conditions of Theorem 1 are satisfied and additionally

mymy
My M;

min(my, my) — o0; — 0,
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asn — oo, then

251D, Xts
T N7 y2
ica X Y2

2, N 1).

2. Proofs

Due to the short format of the paper we find it impossible to place all of the proof
here so we will only quote what we need to change in [5] in order to prove theorems
formulated above and present only the most interesting part in more detail putting the
simpler parts aside.

We reintroduce notations used in [5]:

Mn,l Mn,2

x2=Y " €. Ryi=|Dyl=My1M, 2.
=1 s=1

In order to verifyTheorem 1 wee need to prove:

M M, .
(bZXt,MZ +a ZXMl,s>X’;l >0, 4)
=1 s=1
M M, .
(02X +a 3 X ) 1t =0, ©)
=1 s=1
o P
(2a Z thl,xet,x +2b Z Xt,xflet,x>Xn 2 — 0, (6)
(t,59)€D, (t,59)€D,
o P
26117( > thl,xXt,xfl> Xn 2 —> 2aby(11). (7
(t,59)€D,

(4) is equivalent to proving‘?,gl)x,;l %, 0in [5], analogously (5) is equivalent to
proving R{Y x 1 .0, 6) toRP x2 ", 0 and finally (7) is equivalent to proving
that £ 2 2> 2aby_1.1) in [5].

To proveTheorem 2 we would need to prove additionally; ; <7, x, 2 Lo,

> niz,jX,Zz ", 0. For the definitions we have to redirect you to [5].
Part (7) is most interesting and we will provide some details of its proof here.
We need to show that

o P
26117( > thl,xXt,sfl>Xn2—>20b)’(71,1) (8
(1,5)€D,

for the process defined by (2).
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Let’s denote:

thl,xXt,xfl == Z(l) + Z(Z)

Using (2) we deflng(l) andZ(z) like this:

Z(l)_tiz min{ tXZ:k 1) (k)( k >a2j+lb2k2] 12
IJAVES! =k

k=1 j=max0,k—s-+1}

t+s—2 min{t—2,k1} min{r—21,k} k k
@ 1\ jt+ipkthki—j—j
ZM_Z Z Z ()( q/ tipktki—i—j
k,k1=0 j1=max0,ki—s+1} j=max0,k—s+2} J/\J1
t—1—j#t—j1 Ol s—k+j#As—1—ki+j1

X Stfl*j,sfk+j8t7j1,sflfk1+j1 .

The sum Z}}ﬁ contains all the members of the produkt_j X, 1, where
t—1—j=t—jiands —k+j=s—1+ky+ j1, sumz? has the rest.

This means that expectatioie, e, g x72| in sumsZ(S xy2andZ@ y, 2 can
be estimated using Lemmas 2 and 3 from [5] (which were originally proved in [3])

Elef i *| <CR;* ©)
for the summands iﬂﬁi) and
Elei 1 js—ttj&jrs—1-ktiske | SCRZ (10)
for the summands iﬂ}?. C here and anywhere else in the text stands for a constant.
2 _2 P
Z Zt(,x) Xn 2 —0
(t,s)€Dy
follows then from the usual Chebyshev inequality and the fact:
t+s—2 k k1
2.2 ( )( ) la iR < (1 d) 2,
k,k1=0 j=0 j;=0

Hered = |a| + |b].

P .. .
The proofthaty", ., Z&" %2 — y(~1.1) is just marginally more complex.
As we know

oo r—1
r r 25+1;.2(r—s)—1
y(l’l):ZZ(g) <S+1)a s+1p2(r—s)—1

r=1s=0
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DenoteM; , —t =h1, andMs , — s = ho . If we regroup the coefficients by ;

insumy_ icp, z we would get:

h1¢+h2s—1 min{k—1,hq -1}

> 20= % ( 3 > (’;)(jj‘roazjﬂbzkzj'1)€m_

(t,s)eDy, (t,s)eDy, k=1 j=max0,k—hp ;+1}

Thus by each ofthe, s insumy_, ..p, Z(l)

Z(t s)eD, Tts€ts stands a trimmed
version ofy_1 7). Here

h1¢+h2s—1 minfk—1,h1,—1}

k k ; _2i_
e S 3 O T e
k=1 AVAE
=1 j=max0,k—hps+1}
We split the remainder term(”) into 3 parts:
Rz(f? _ (n 1 —i—R(” .2) —i—R(” 3)_
Definitions are as follows:

o
(n, 1) 2j4+1; 2k—2j—1
kb= X S (5)( L e

k=hy;+hp s j=0

hyt+hos—1 k—ha, s
(n,2) 2j4+1;2k—2j—1
REZ= % Moo 3 I
k=1
hyt+hos—1
(n,3) 2j4+1;2k—2j-1
R(ts) Z 1 h1,>0 Z ( )<j+1> JTLp J—4
k=1

TheR(” 2 andR(” 3 are similar so we will just show how to estimate the impact
of one of them the other one is dealt with in the same way.
The estimation is as follows:

hlt+h2x li— ho,s

Z Z ( ><1+1) 2j+1p2k~2j-1

k=hy,+2 j=0

R =

hl,t+h2,371 k+1—ho,s k k 2
<lallbl Y &+ Y ((.)(.)afb“)
k=hy, =0 1/ \J

hy+hos—1

<lallbl Y (k+1d* < Chpd®2s.
k=hp ¢
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Now we can easily see that Chebyshev theorem and estimate (9) proves:

P
Z Rt(f?z)ez XJZ — 0.

1,8
(t,5)€Dy

We would get the same result fmff’f) following the same steps.
To prove that

QD2 -2 P
Z Rt(ns )Et,xxn — 0,
(t,s)eDy

we use the same approach and similar estimate.

|R(nvl) < C(hl,t +h2,y)d2(hl’t+h2“‘)-

t,s

Thus the required result (8) is achieved. The proof of (6) follows from the combination
of Chebyshev theorem and aforementioned lemmas 2 and 3 from [5]. However in this
case estimation of the second moment of the quantity is necessary, but the framework
is essentially the same. Proving (4) and (5) is even simpler, it can be done just by
applying lemmas and using Newton binomial formula.
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REZIUME
R. Zove. Keletas pastabu apie paprasto autoregresinio lauko autonor mavima

Straipsnyje praglStas paprasto autoregresiniolaukq = aX;_1 + b X; s—1+ & s autonormavimo tyri-
mas praétas [5]. Gauti rezultatai kuomet jau reiio lauko inovacijos neturi antro momento.



