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Some remarks on selfnormalization for a simple
spatial autoregressive model
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Abstract. In the paper I continue investigations on the self-normalization of simple autoregressive field
Xt,s = aXt−1,s + bXt,s−1 + εt,s started in [5]. And extend previous results when the variance of the
innovations of the process above are not finite.
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1. Introduction and formulation of results

This paper continues the investigations of the self-normalization for the autoregres-
sive fields on the plane which were started in [5]. In this paper the results for self-
normalization forAR(1) process obtained by Juodis and Raˇckauskas [4] were gen-
eralized for the autoregressive field on the plane. However the results presented in
[5] were proved under assumption of the the existence of the second moment for the
innovations of the autoregressive field we are working with. Here we give a slight ex-
tention of this result and prove that sufficient condition for our results to hold is that
innovations belong to the domain of attraction of the normal law.

We consider one of the most simple autoregressive fields

Xt,s = aXt−1,s + bXt,s−1 + εt,s. (1)

We suppose that thatεt,s, (t, s) ∈ Z2 are i.i.d. random variables withεt,s ∈ DAN .
DAN here stands for domain of attraction of the normal law. We assume as well
that |a| + |b| < 1. If the second moment for the innovations is finite this condition
guarantees the existence of a stationary solution for (1). However this is not the case
and we will have to investigate process (1) with initial conditionsX0,s = 0, Xt,0 = 0,
(t, s) ∈ Z2, t � 0, s � 0. In this case the process would have the form:

Xt,s =
t+s−1∑
k=0

min{k,t−1}∑
j=max{0,k−s+1}

(
k

j

)
ajbk−j εt−j,s−k+j , t > 0, s > 0. (2)

Let’s define

γ(−1,1) =
∞∑

r=1

r−1∑
s=1

(
r

s

)(
r

s + 1

)
a2s+1b2r−2s−1.
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Set

σ 2(a,b) = (1− a2 − b2)(1− a − b)−2(1+ 2abγ(−1,1)

)−1
.

Finally, let us denoteM̄n = (Mn,1, Mn,2) and

Dn = {
(t, s): (t, s) ∈ Z2 1� t � Mn,1,1 � s � Mn,2

}
.

(In the sequel, where there will be no confusion we suppress indexn in some nota-
tions.) Now our first result can be formulated as follows.

THEOREM 1. If Xt,s is defined by (2), random variables εt,s are i.i.d., Eεt,s = 0
εt,s ∈ DAN , and min{M1,M2} → ∞ as n → ∞, then:

∑
(t,s)∈Dn

Xt,s(∑
(t,s)∈Dn

X2
t,s

)1/2
D−→ N

(
0,σ 2(a,b)

)
. (3)

To explain the meaning of notationγ(−1,1) we revisit the case where innova-
tions εt,s have finite variances. In this case for integersl1, l2 we denoteγ(l1,l2) =
EXt,sXt+l1,s+l2, whereXt,s is from (1).

In the paper [2] (see also[1] ) it was shown that

γ(−1,1) :=
{

(1−a2−b2)γ 2
(0,0)

−1
2ab

, if ab �= 0,
0, otherwise,

γ(0,0) := (
(1+ a + b)(1+ a − b)(1− a + b)(1− a − b)

)−1/2
.

It is necessary to note that even in the case of infinite second moments for innova-
tions, the limit distribution is still the same.

We will also reformulate the Theorem 2 in [5] with the new conditions for the
innovations. Assume that 1� m1 � M1, 1� m2 � M2 are integers (dependent onn,
too) and such thatI := M1m

−1
1 andJ := M2m

−1
2 are integers, we setm1,i := m1(i −

1), m2,j := m2(j − 1) and

Di,j = {
(t, s): m1,i + 1� t � m1,i+1,m2,j + 1� t � m2,j+1

}
,

1� i � I, 1� j � J.

If we define

Yi,j =
∑

(t,s)∈Di,j

Xt,s,

then, sinceDn = ∪I
i=1 ∪J

j=1 Di,j , clearly we have
∑

(t,s)∈Dn
Xt,s = ∑I

i=1
∑J

j=1Yi,j .

THEOREM 2. If conditions of Theorem 1 are satisfied and additionally

min(m1, m2) → ∞; m1m2

M1M2
→ 0,
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as n → ∞, then ∑
(t,s)∈Dn

Xt,s

(
∑I

i=1
∑J

j=1Y 2
i,j )1/2

D−→ N(0,1).

2. Proofs

Due to the short format of the paper we find it impossible to place all of the proof
here so we will only quote what we need to change in [5] in order to prove theorems
formulated above and present only the most interesting part in more detail putting the
simpler parts aside.

We reintroduce notations used in [5]:

χ2
n :=

Mn,1∑
t=1

Mn,2∑
s=1

ε2
t,s , Rn := |Dn| = Mn,1Mn,2.

In order to verifyTheorem 1 wee need to prove:

(
b

M1∑
t=1

Xt,M2 + a

M2∑
s=1

XM1,s

)
χ−1

n

P−→ 0, (4)

(
b

M1∑
t=1

X2
t,M2

+ a

M2∑
s=1

X2
M1,s

)
χ−1

n

P−→ 0, (5)

(
2a

∑
(t,s)∈Dn

Xt−1,sεt,s + 2b
∑

(t,s)∈Dn

Xt,s−1εt,s

)
χ−2

n

P−→ 0, (6)

2ab
( ∑

(t,s)∈Dn

Xt−1,sXt,s−1

)
χ−2

n

P−→ 2abγ(−1,1). (7)

(4) is equivalent to provingR(1)
n χ−1

n

P−→ 0 in [5], analogously (5) is equivalent to

provingR
(3)
n χ−1

n

P−→ 0, (6) toR
(2)
n χ−2

n

P−→ 0 and finally (7) is equivalent to proving

thatF (2)
n χ−2

n

P−→ 2abγ(−1,1) in [5].

To proveTheorem 2 we would need to prove additionally:
∑

i,j κ2
i,j χ−2

n

P−→ 0,∑
i,j η2

i,jχ
−2
n

P−→ 0. For the definitions we have to redirect you to [5].
Part (7) is most interesting and we will provide some details of its proof here.
We need to show that

2ab
( ∑

(t,s)∈Dn

Xt−1,sXt,s−1

)
χ−2

n

P−→ 2abγ(−1,1) (8)

for the process defined by (2).
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Let’s denote:

Xt−1,sXt,s−1 = Z
(1)
t,s + Z

(2)
t,s .

Using (2) we defineZ(1)
t,s andZ

(2)
t,s like this:

Z
(1)
t,s =

t+s−2∑
k=1

min{t−2,k−1}∑
j=max{0,k−s+1}

(
k

j

)(
k

j + 1

)
a2j+1b2k−2j−1ε2

t−j,s−k+j ,

Z
(2)
t,s =

t+s−2∑
k,k1=0

min{t−2,k1}∑
j1=max{0,k1−s+1}

min{t−1,k}∑
j=max{0,k−s+2}

t−1−j �=t−j1 or s−k+j �=s−1−k1+j1

(
k

j

)(
k1

j1

)
aj+j1bk+k1−j−j1

× εt−1−j,s−k+j εt−j1,s−1−k1+j1.

The sumZ
(1)
t,s contains all the members of the productXt−1,sXt,s−1, where

t − 1− j = t − j1 ands − k + j = s − 1+ k1 + j1, sumZ
(2)
t,s has the rest.

This means that expectationsE|εt ′,s′εt ′′,s′′χ−2
n | in sumsZ(1)

t,s χ−2
n andZ

(2)
t,s χ−2

n can
be estimated using Lemmas 2 and 3 from [5] (which were originally proved in [3])

E
∣∣ε2

t,sχ
−2
n

∣∣ � CR−1
n (9)

for the summands inZ(1)
t,s and

E
∣∣εt−1−j,s−k+jεt−j1,s−1−k1+j1χ

−2
n

∣∣ � CR−2
n (10)

for the summands inZ(2)
t,s . C here and anywhere else in the text stands for a constant.

∑
(t,s)∈Dn

Z
(2)
t,s χ−2

n

P−→ 0

follows then from the usual Chebyshev inequality and the fact:

t+s−2∑
k,k1=0

k∑
j=0

k1∑
j1=0

(
k

j

)(
k1

j1

)
|a|j+j1|b|k+k1−j−j1 � (1− d)−2.

Hered = |a| + |b|.
The proof that

∑
(t,s)∈Dn

Z
(1)
n χ−2

n

P−→ γ(−1,1) is just marginally more complex.
As we know

γ(−1,1) =
∞∑

r=1

r−1∑
s=0

(
r

s

)(
r

s + 1

)
a2s+1b2(r−s)−1.
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DenoteM1,n − t = h1,t andM2,n − s = h2,s . If we regroup the coefficients byεt,s

in sum
∑

(t,s)∈Dn
Z

(1)
t,s we would get:

∑
(t,s)∈Dn

Z
(1)
t,s =

∑
(t,s)∈Dn

(h1,t+h2,s−1∑
k=1

min{k−1,h1,t−1}∑
j=max{0,k−h2,s+1}

(
k

j

)(
k

j + 1

)
a2j+1b2k−2j−1

)
εt,s.

Thus by each of theεt,s in sum
∑

(t,s)∈Dn
Z

(1)
t,s = ∑

(t,s)∈Dn
τt,sεt,s stands a trimmed

version ofγ(−1,1). Here

τt,s =
h1,t+h2,s−1∑

k=1

min{k−1,h1,t −1}∑
j=max{0,k−h2,s+1}

(
k

j

)(
k

j + 1

)
a2j+1b2k−2j−1 = γ(−1,1) − R

(n)
t,s .

We split the remainder termR(n)
t,s into 3 parts:

R
(n)
t,s = R

(n,1)
t,s + R

(n,2)
t,s + R

(n,3)
t,s .

Definitions are as follows:

R
(n,1)
(t,s)

=
∞∑

k=h1,t +h2,s

k−1∑
j=0

(
k

j

)(
k

j + 1

)
a2j+1b2k−2j−1,

R
(n,2)
(t,s)

=
h1,t+h2,s−1∑

k=1

1k−h2,s+1>0

k−h2,s∑
j=0

(
k

j

)(
k

j + 1

)
a2j+1b2k−2j−1,

R
(n,3)
(t,s)

=
h1,t+h2,s−1∑

k=1

1k−h1,t>0

k−1∑
j=h1,t

(
k

j

)(
k

j + 1

)
a2j+1b2k−2j−1.

TheR
(n,2)
t,s , andR

(n,3)
t,s are similar so we will just show how to estimate the impact

of one of them, the other one is dealt with in the same way.
The estimation is as follows:

∣∣R(n,2)
t,s

∣∣ =
∣∣∣∣
h1,t+h2,s−1∑
k=h2,s+2

k−h2,s∑
j=0

(
k

j

)(
k

j + 1

)
a2j+1b2k−2j−1

∣∣∣∣

� |a||b|
h1,t +h2,s−1∑

k=h2,s

(k + 1)

k+1−h2,s∑
j=0

((
k

j

)(
k

j

)
ajbk−j

)2

� |a||b|
h1,t +h2,s−1∑

k=h2,s

(k + 1)d2k � Ch2,sd
2h2,s .
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Now we can easily see that Chebyshev theorem and estimate (9) proves:∑
(t,s)∈Dn

R
(n,2)
t,s ε2

t,sχ
−2
n

P−→ 0.

We would get the same result forR
(n,3)
t,s following the same steps.

To prove that ∑
(t,s)∈Dn

R
(n,1)
t,s ε2

t,sχ
−2
n

P−→ 0,

we use the same approach and similar estimate.∣∣R(n,1)
t,s

∣∣ � C(h1,t + h2,s)d
2(h1,t+h2,s ).

Thus the required result (8) is achieved. The proof of (6) follows from the combination
of Chebyshev theorem and aforementioned lemmas 2 and 3 from [5]. However in this
case estimation of the second moment of the quantity is necessary, but the framework
is essentially the same. Proving (4) and (5) is even simpler, it can be done just by
applying lemmas and using Newton binomial formula.
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REZIUMĖ

R. Zovė. Keletas pastab ↪u apie paprasto autoregresinio lauko autonormavim ↪a

Straipsnyje prapl˙estas paprasto autoregresinio laukoXt,s = aXt−1,s + bXt,s−1 + εt,s autonormavimo tyri-

mas prad˙etas [5]. Gauti rezultatai kuomet jau min˙eto lauko inovacijos neturi antro momento.


