The Boolean zeta function

Algirdas JAVTOKAS (VU)
e-mail: ajavtokas@math.com

Abstract

This paper provides analysis on Dirichlet series with a_{n} coefficients obtained from $\operatorname{MAJ}_{m}\left(x_{1}, \ldots, x_{m}\right)$ function known in theoretical computer science.

Keywords: Boolean zeta-function, geometric zeta-function, zeta function.

An ordinary fractal string L is a bounded open subset Ω of \mathbb{R}. Such a set consists of countably many open intervals, the lengths of which will be denoted by $l_{1}, l_{2}, l_{3}, \ldots$, called the lengths of the string [4]. Let us define binary number by $[n]_{2}=x_{1} x_{2} \ldots x_{m}$, $x_{j} \in\{0,1\}, j=1, \ldots, m$.

Let

$$
a_{n}= \begin{cases}1, & \text { if } \sum_{1 \leqslant i<m} x_{i} \geqslant m / 2 \\ 0, & \text { otherwise }\end{cases}
$$

It is well known in the computer science the majority function $\operatorname{MAJ}_{m}\left(x_{1}, \ldots, x_{m}\right)=$ a_{n} [1].

Now we can define a zeta function

$$
\zeta_{\mathrm{BM}}(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

which is holomorphic for $\sigma>1$.
Let us define strings' lengths of the zeta function by $a_{n} / n, n \in \mathbb{N}$. As we see string lengths can be divided into two types: with length 0 and other with lengths $1 / n, n \in \mathbb{N}$.

Let us divide a set \mathbb{N} into subsets (intervals), where $a_{n}=0$ and $a_{n}=1$. Let's number these intervals. In the next step let's number the elements from every interval. Then we can denote by $c_{k l}, k \in \mathbb{N}, l=1, \ldots, m$, the l-th element from the k-th interval with a given value n. As an example, we can write the first eight elements: $c_{11}=1, c_{12}=2$, $c_{13}=3, c_{21}=4, c_{31}=5, c_{32}=6, c_{33}=7, c_{41}=8, \ldots$ So we have obtained two sets, upper C^{*} and lower C_{*}, where zeta function's strings' lengths are equal to $1 / n$ or zero,

$$
\begin{aligned}
& C^{*}=\left\{c_{k l}: k \text { is odd, } l \in \mathbb{N}\right\} \\
& C_{*}=\left\{c_{k l}: k \text { is even, } l \in \mathbb{N}\right\}
\end{aligned}
$$

Dirac's delta function is a linear functional from a space (commonly taken as a Schwartz space S or the space of all smooth functions of compact support D) of test
functions f

$$
\delta(x-a)=0, \text { as } x \neq a, \text { and } \int_{-\infty}^{\infty} f(x) \delta(x-a) \mathrm{d} x=f(a)
$$

The Heaviside step function is defined by

$$
H(x)= \begin{cases}1, & \text { if } x \geqslant 0 \\ 0, & \text { if } x<0\end{cases}
$$

The Dirac delta function can be viewed as the derivative of the Heaviside step function [3]

$$
\frac{\mathrm{d}}{\mathrm{~d} x} H(x)=\delta(x)
$$

Now we can construct the numbers

$$
\eta_{k}=c_{k 1}-\omega
$$

where ω is infinitesimal number, bigger than zero, but less than any positive real number [2].

THEOREM 1. For $\sigma>1$ and $M=\left\{r: n \in c_{r p}\right\}$ we have

$$
\zeta_{\mathrm{BM}}(s)=\sum_{n=1}^{\infty} \sum_{k=1}^{M} \frac{(-1)^{k-1} H\left(n-\eta_{k}\right)}{n^{s}}
$$

Proof. Let's investigate two cases: $n \in C_{*}$ and $n \in C^{*}$. Let n be fixed. In the first case when $n \in C_{*}$ we have $H\left(n-\eta_{k}\right)=1$ for $n>\eta_{k}$, and the number of such terms will be even. From this it follows

$$
\sum_{k=1}^{M}(-1)^{k-1} H\left(n-\eta_{k}\right)=0
$$

and we get $a_{n}=0$ if $n \in C_{*}$.
In the second case when $n \in C^{*}$ we have $H\left(n-\eta_{k}\right)=1$ for $n>\eta_{k}$, and the number of such terms will be odd. Because of the first term is positive, the last term of the sequence $(-1)^{k-1} H\left(n-\eta_{k}\right)$ is positive. From this we have that

$$
\sum_{k=1}^{M}(-1)^{k-1} H\left(n-\eta_{k}\right)=1
$$

and we get $a_{n}=1$ if $n \in C^{*}$.
If we will sum more terms, than M, then we get $n<\eta_{k}, H\left(n-\eta_{k}\right)=0$ and these terms will not contribute the sum. This completes the proof.

For our purposes will be useful the following statement.
Lemma 1. Let

$$
\sum_{n \leqslant x} b_{n}=K x+R(x)
$$

where $R(x)=\mathrm{O}\left(x^{\alpha}\right)$ with $0 \leqslant \alpha<1$. Then we have

$$
\sum_{n=1}^{\infty} \frac{b_{n}}{n^{s}}=\frac{K s}{s-1}+\int_{1}^{\infty} \frac{R(u) \mathrm{d} u}{u^{s+1}}
$$

for $\sigma>\alpha$.
Proof can be found in [5].
Let a_{n} satisfy the hypothesis of Lemma 1

$$
\sum_{n \leqslant x} a_{n}=K x+\mathrm{O}\left(x^{\alpha}\right)
$$

with $0 \leqslant \alpha<1$. For example, we can take $a_{2^{n}-1}=1$ for all $n \in \mathbb{N}$. Then the equality $\sum_{n \leqslant x} a_{n}=\left[\log _{2}(x+1)\right]$ holds.

For such a_{n} we have the following statement.
THEOREM 2. The function $\zeta_{\mathrm{BM}}(s)$ is analytically continuable to the region $\sigma>\alpha$, except, maybe, for a simple pole at $s=1$ with residue K.

Proof. Summing by parts we find that

$$
\sum_{n \leqslant x} \frac{a_{n}}{n^{s}}=K\left(\frac{x^{1-s}}{1-s}-\frac{s}{1-s}\right)+s \int_{1}^{x} \frac{R(u) \mathrm{d} u}{u^{s+1}}+\mathrm{O}\left(x^{\delta-\sigma}\right)
$$

Taking $\sigma>1$ and letting x to infinity, whence we obtain

$$
\zeta_{\mathrm{BM}}(s)=\frac{K s}{s-1}+s \int_{1}^{\infty} \frac{R(u) \mathrm{d} u}{u^{s+1}}
$$

The integral here converges uniformly in $\sigma \geqslant \alpha+\varepsilon$ for each $\varepsilon>0$. Therefore the last equality gives the analytic continuation of the function $\zeta_{\mathrm{BM}}(s)$ to the half-plane $\sigma>\alpha$. In this half-plane $\zeta_{\mathrm{BM}}(s)$ is regular if $K=0$. In case $K \neq 0$ the point $s=1$ is its simple pole with residue K.

Now we can evaluate the case given by the Lemma 1, and we have

$$
\zeta_{\mathrm{BM}}(s)=\frac{K s}{s-1}+\mathrm{O}\left(\frac{|s|}{\alpha-\sigma}\right)
$$

References

1. P. Clote, E. Kranakis, Boolean Functions and Computation Models, Springer, Berlin (2002)
2. H. Gonshor, An Introduction to Surreal Numbers (London Mathematical Society Lecture Note Series), Cambridge University Press, London (1986).
3. A.N. Kolmogorov, S.V. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover Publications, New York (1999).
4. M.L. Lapidus, M. van Frankenhuysen, Fractal Geometry and Number Theory, Birkhauser, New York (2000).
5. A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht (1996).

REZIUMĖ

A. Javtokas. Dvejetainė dzeta funkcija

Straipsnyje apibrėžiama dvejetainė dzeta funkcija. Suformuluojamos dvi teoremos, kuriose dvejetainė dzeta funkcija išreiškiama Heavisaido funkcija ir pratęsiama ị sritị $\sigma>\alpha$, kai $0 \leqslant \alpha<1$.

