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Abstract. We characterize degenerate cyclic codes and study their properties.
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Introduction

Recently an algorithm for computing the permutation and automorphism groups of
an error-correcting block linear code, and for determining the equivalence and the
permutation-equivalence of two such codes, based on the algorithms of J. Leon [2–4]
and N. Sendrier [7], was presented [8–11]. This algorithm is limited by the size of the
hull (the intersection of a code with its dual). That shows the necessity to study the size
of the hull in various classes of linear codes. In [6], N. Sendrier studies the expected
dimension of the hull of a random linear code. He shows that asymptotically it is a
small positive constant. In [12], the author studies the expected dimension of the hull
of a random cyclic code. He shows that either it is zero, or it grows at the same rate
as the length of codes. It is thus important to find some classes of cyclic codes with a
small hull. The present paper concerns a class of cyclic codes, called degenerate cyclic
codes.

1. Preliminaries

See [5] for basic definitions of error-correcting codes.
In this paper q is a power of a prime p, Fq is the finite field of size q, n,m,n′ are

positive integers, m > 1, n = mn′.
Let Fq be any finite field. A linear code C of length n over Fq is a linear subspace

of the vector space Fn
q . The vectors of a code are called codewords. A linear code of

length n and of dimension k will be denoted by [n,k]. The dual code C⊥ of C is
defined to be C⊥ = {u ∈ Fn

q | u · v = 0 for all v ∈ C}, where u · v = u1v1 + · · · + unvn

is the scalar product of vectors u = (u1, . . . ,un) and v = (v1, . . . , vn). The hull was
introduced by Assmus and Key in [1]. The hull of a linear code C, denoted by H (C),
is its intersection with its dual code: H (C) = C ∩ C⊥.

A linear code C of length n is called cyclic if it verifies this condition: if
(c0, . . . , cn−2, cn−1) ∈ C, then (cn−1, c0, . . . , cn−2) ∈ C. Usually cyclic codes are de-
scribed by the means of polynomials. A vector c = (c0, c1, . . . , cn−1) ∈ Fn

q corresponds
to the polynomial c(X) = c0 + c1X + · · · + cn−1X

n−1 ∈ Fq [X]/(Xn − 1). Then it can
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be shown that cyclic code of length n is an ideal in the ring Fq [X]/(Xn −1), generated
by a monic factor gC(X) of Xn − 1. Also, every monic divisor of Xn − 1 generates a
distinct ideal. The polynomial gC(X) is called the generator polynomial of C.

A linear code which consists of several repetitions of a linear code of smaller length
is said to be degenerate. We will give a formal definition. Let u be a vector of length n′.
Denote Rm(u) = (u| · · · |u) (m times) — the concatenation of m vectors u. The vector
Rm(u) is of length n = mn′. A linear code C of length n is said to be degenerate if
there exist a divisor m > 1 of n and a linear code C ′ of length n′ = n/m such that
C =Rm(C ′), where Rm(C ′) = {Rm(c′) | c′ ∈ C ′}. We call the code C ′ the inner code
of C. We see that the structure of degenerate codes is very special.

2. Degenerate cyclic codes

In the reminder of the paper we shall assume that gcd(n,q) = 1. We give a characteri-
zation of degenerate cyclic codes of length n over Fq .

THEOREM 1. Let gcd(n,q) = 1. These statements are equivalent.

1. A cyclic code C of length n over Fq is degenerate.

2. There exists integers r , 1 < r < n, and s, 1 < s < n, such that n = rs and 1 +
Xs + · · · + X(r−2)s + X(r−1)s divides gC(X).

3. There exists integers r , 1 < r < n, and s, 1 < s < n, such that n = rs and
gC⊥(X) divides Xs − 1.

We get the following properties of degenerate cyclic codes.

THEOREM 2. Let m > 1. Let C ′ be a cyclic code of length n′. Let C =Rm(C ′) be
a degenerate cyclic code. Then

1. gC(X) = gC′(X)(1 + Xn′ + X2n′ + · · · + Xn−n′
).

2. gC⊥(X) = gC′⊥(X).

By the inclusion-exclusion principle we get the following result on the number of
degenerate cyclic codes.

THEOREM 3. Let gcd(n,q) = 1. Let n = p
e1
1 · · ·pet

t be the prime decomposition of
n, let N(d) be the number of divisors of Xd −1 over Fq . Then the number of degenerate
cyclic codes of length n over Fq is

t∑
l=1

(−1)l+1
∑

{i1,...,il }⊂{1,...,t}
N

( n

pi1 · · ·pil

)
.

In order that the algorithm mentioned in Introduction works, the dimension of the
hull of a code must be small enough. As the following result shows, the dimension of
the hull of a degenerate cyclic code is equal to that of its much smaller inner code.
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THEOREM 4. Let m > 1. Let C = Rm(C ′) be a degenerate cyclic code. Then
H (C) =Rm(H (

C ′)).

COROLLARY 1. Let m > 1. Let C = Rm(C ′) be a degenerate cyclic code. Then
dimH (C) = dimH (

C ′).

Conclusions

Let C ′ be a cyclic code. Then {Rm(C ′)}m>1 is a (infinite) family of degenerate cyclic
codes. The dimension of the hull of any code in this family is constant and equal to the
dimension of the hull of C ′. So if the algorithm mentioned in Introduction runs for C ′,
it will run for other codes in this family.

It remains to see what happens when gcd(n,q) �= 1. Moreover, it seems that it is
possible to extend the results to linear codes.
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REZIUMĖ

G. Skersys. Apie išsigimusius ciklinius kodus

Šiame straipsnyje pateikiame kriterijus, leidžiančius nustatyti, ar duotas ciklinis kodas yra išsigim ↪es. Ti-

riame išsigimusi ↪u ciklini ↪u kod ↪u savybes.


