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Abstract. In this paper, relations between discrete Sturm–Liouville problem with nonlo-
cal integral boundary condition characteristics (poles, critical points, spectrum curves) and
graphs characteristics (vertices, edges and faces) were found. The previous article was de-
voted to the Sturm–Liouville problem in the case two-points nonlocal boundary conditions.
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1 A discrete Sturm–Liouville Problem

In this paper, particular properties of the spectrum of a discrete Sturm–Liouville
Problem (dSLP) [3, 4, 5] with Integral Boundary Condition were found using Euler’s
charakteristic formula [2]. In previous article [5] we have found relations between spec-
trum curve properties and graphs theory in the case of two-points nonlocal boundary
conditions.

We introduce a uniform grid and we use notation ω̄h = {tj = jh,

j = 0, . . . , n;nh = 1} for 2 < n ∈ N, and Nh := (0, n)∩N, Nh
= Nh ∪{0, n}. Also, we

make an assumption that ξ1 and ξ2 are located on the grid, i.e., ξ1 = m1h = m1/n,
ξ2 = m2h = m2/n, m ∈ Sh

ξ := {(m1,m2) : 0 ≤ m1 < m2 ≤ n,m1,m2 ∈ Nh}.
Let ξ = m/n = (m1/n,m2/n), ξ = ξ1/ξ2 = m1/m2, ξ+ = ξ1 + ξ2 = m+/n,
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ξ− = ξ2 − ξ1 = m−/n, here m+ := m1 + m2, m− = m2 − m1. We denote
Nodd = {k ∈ N : k – odd}, Neven = {k ∈ N : k – even}.

Let us consider a dSLP (an approximation by Finite-Difference Scheme) [3, 5]

Ui+1 − 2Ui + Ui−1

h2
= λUi, i = 1, . . . , n− 1, (1)

λ ∈ C with a classical discrete Dirichlet Boundary Condition (BC)

U0 = 0 (2)

and Integral Boundary Condition (approximated by trapezoidal formula):

Un = γh

(
Um1

+ Um2

2
+

m2−1∑
k=m1+1

Uk

)
. (3)

Let us consider a bijection (see [1])

λ = λh(q) :=
4

h2
sin2

πqh

2
(4)

between Cλ := C and Ch
q , Ch

q := Rh
q ∪Ch+

q ∪Ch−
q , Rh

q := R−
y ∪ {0} ∪Rh

x ∪ {n} ∪Rh+
y ,

R−
y := {q = ıy : y > 0}, Rh

x := {q = x : 0 < x < n}, Rh+
y := {q = n + ıy : y > 0},

Ch+
q := {q = x+ ıy : 0 < x < n, y > 0}, Ch−

q := {q = x+ ıy : 0 < x < n, y < 0}. The
general solution Uj for a discrete equation (1) is equal to:

Uj = C1sin(πqtj)(1− hq)−1π−1q−1 + C2 cos(πqtj).

Then by using BCs (2) and (3) we get an equation:

Zh(q) = γPh
ξ (q), q ∈ Ch

q ,

where functions Zh(q) and Ph
ξ (q) are as follows:

Zh(q) =
sin(πq)

πq
·

sin(π2 qh)

πqh cos(π2 qh)
, Ph

ξ (q) =
sin

(
π
2 q(ξ2 − ξ1)

)
πq

·
sin

(
π
2 q(ξ2 + ξ1)

)
πq

Constant Eigenvalues. For any constant eigenvalue λ ∈ Cλ there exists the
Constant Eigenvalue Point (CEP) q ∈ Cq. CEP are roots of the system [1]:

Zh(q) = 0, Ph
ξ (q) = 0.

For every CEP cj we define nonregular Spectrum Curve Nj = {cj}.
Nonconstant eigenvalues. Let us consider Complex Characteristic Function:

γc(q) = γc(q; ξ) :=
Zh(q)

Ph
ξ
(q)

, q ∈ Ch
q . (5)

All nonconstant eigenvalues (which depend on the parameter γ) are γ-points of
(Complex-Real) Characteristic Function (CF)[6]. CF γ(q) is the restriction of Com-
plex CF γc(q) on a set Dξ := {q ∈ Ch

q : Im γc(q) = 0} (see more in [5]). We call such
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(a) m = (0, 2)

(b) m = (1, 2)

(c) m = (0, 1)

Fig. 1. Spectrum
Curves for n = 2[4].

(a) m = (0, 3) (b) m = (1, 3) (c) m = (2, 3)

(d) m = (0, 2) (e) m = (1, 2) (f) m = (0, 1)

Fig. 2. Spectrum Curves for n = 3 [4].

(a) m = (0, 4) (b) m = (1, 4) (c) m = (2, 4) (d) m = (3, 4)

(e) m = (0, 3) (f) m = (1, 3) (g) m = (2, 3)

(h) m = (0, 2) (i) m = (1, 2) (j) m = (0, 1)

Fig. 3. Spectrum Curves for n = 4 [4].

curves regular Spectrum Curves [1, 4]. The regular Spectrum Curves form Spectrum
Domain in Ch

q ∪ {∞} (see Figures 1–5 for the first n).
Each regular Spectrum Curve begins at the pole point (γ = −∞) of CF and ends

at the pole point (γ = +∞) of CF. We denote a set Poles P := {pi, i = 1, n̄p}, where
n̄p is the number of poles at Ch

q . For our problems P ⊂ Rh
x ∪ {n} and all such poles

are of the first order or the second order. We denote n1p, n2p the number of the first
order and the second order poles, respectively. We use notation np := n1p + 2n2p for
number poles with multiplicity. So, n̄p = n1p + n2p = np − n2p.

Liet.matem. rink. Proc. LMS, Ser. A, 62:1–8, 2021
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(a) m = (0, 5) (b) m = (1, 5) (c) m = (2, 5) (d) m = (3, 5) (e) m = (4, 5)

(f) m = (0, 4) (g) m = (1, 4) (h) m = (2, 4) (i) m = (3, 4) (j) m = (0, 1)

(k) m = (0, 3) (l) m = (1, 3) (m) m = (2, 3) (n) m = (0, 2) (o) m = (1, 2)

Fig. 4. Spectrum Curves for n = 5 [4].

There exist Pole Points (PP) of the second order. They are described as follows:

p12k = 2nk/ gcd (m+,m−), k = 1, . . . ,
⌊
n/p121

⌋
.

All PP of the second order are in Rh
x. Note that there could be a PP of second order

in Ramification Point q = n, so they become simple PP of the first order.
Two or more Spectrum Curves may intersect at CP. We denote a set CP B :=

{bi, i = 1, nb}, where nb is the number of CPs at Ch
q . The number of CPs at Rh

q

and Ch+
q we denote as ncr and n+

cr, respectively. Note that the part of the spectrum
domain in set Ch+

q is symmetric to the part in set Ch−
q . So, nb = ncr +2n+

cr. If b ∈ B
then deg+(b) is one unit larger than the order of this CP.

The pole at q = ∞ is of
n∞ = n−m2 (6)

order. If m2 < n, q = ∞ is a PP. For m2 = n, q = ∞ is a Removable Singularity
Point.

For poles and CP deg+(q), q ∈ P∪B∪{∞}, corresponds to the number of outgoing
Spectrum Curves at that point. Note that incoming Spectrum Curves alternate with
outgoing, so deg+(q) = deg−(q).

2 Relations between dSLP and graphs properties in the case
of integral BC

It is possible to define relations between properties of dSLP and graph theory. Poles
or CPs refer to vertices of a certain graph and parts of Spectrum Curves could be
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(a) m = (0, 5) (b) m = (1, 5) (c) m = (2, 5) (d) m = (3, 5) (e) m = (4, 5)

(f) m = (0, 4) (g) m = (1, 4) (h) m = (2, 4) (i) m = (3, 4) (j) m = (0, 1)

(k) m = (0, 3) (l) m = (1, 3) (m) m = (2, 3) (n) m = (0, 2) (o) m = (1, 2)

Fig. 5. Spectrum Curves for n = 6 [4].

interpreted as edges. In our case, we have a simple balanced weakly connected digraph.
Definitions and notations in graphs theory are described in [5].

2.1 Properties of Spectrum Curves

Poles, CPs, regular and nonregular Spectrum Curves, CEPs were found by A. Skučaitė
[4].

There is n − 1 Spectrum Curves for every n ∈ N, n ≥ 2. Nonregular Spectrum
Curves are CEPs and belong to Rh

x = (0, n). The number of such Spectrum Curves
is equal to

nce =

⌊
n− 1

2n
dbd(2n;m+)

⌋
+

⌊
n− 1

2n
dbd(2n;m−)

⌋
−
⌊
n− 1

2n
dbd(2n;m+;m−)

⌋ (7)

Number of regular Spectrum Curves nnce = n− 1− nce. The poles of CF belong
to Rh

x ∪ {0} ∪ {n} ∪ {∞} and np + n∞ = nnce. So, we have formula

np + nce = m2 − 1. (8)
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Let us denote

deg+r :=
∑

b∈B∩Rh
q

deg+(b), deg+c :=
∑

b∈B∩Ch±
q

deg+(b) = 2
∑

b∈B∩Ch+
q

deg+(b).

Let nc is the number of Spectrum Curves parts in Ch+
q between two CP (including

q = 0 and q = n).

2.2 Spectrum domain as a graph

We consider Spectrum domain as graph on sphere (Riemann sphere C̄) because Ch
q ∪

{∞} ∼ S2. The poles and CPs of the CF are the vertices of this graph. The point ∞
is the pole or CP.

Lemma 1. The number of vertices is

v = np − n2p + nb + 1− ⌊m2/n⌋
= np − n2p + ncr + 2n+

cr + 1− ⌊m2/n⌋
= m2 − nce − n2p + ncr + 2n+

cr − ⌊m2/n⌋. (9)

We have e =
∑

p∈P deg+(p) +
∑

b∈B deg+(b) + deg+(∞) ([5]).

Lemma 2. The number of edges is

e = np + deg+r +deg+c +n∞. (10)

Lemma 3. The number of faces is

f = 2(n∞ + n2p + nc − n+
cr + ⌊m2/n⌋)

= 2(n−m2 + n2p + nc − n+
cr + ⌊m2/n⌋). (11)

This lemma is valid for nc = n+
cr = 0. Each part of spectrum curve between two CPs

b1, b2 ∈ Rh
q increases the number of faces by one. So, this formula is valid for the case

n+
cr = 0. Each additional CP b ∈ Ch+

q increases the number of faces by 2(deg+(b)−1)

and number parts of Spectrum Curves between this CP and other CPs by 2 deg+(b).
Numbers of spectrum vertices, edges and faces, expressed by the formulas above,

inserted to the Euler’s characteristic’s formula of sphere v − e + f = 2 give new
relation.

Theorem 1. The Euler’s characteristic’s formula is equivalent to∑
b∈B

deg+(b) = deg+r +deg+c = n∞ + n2p + 2nc + ncr − 1 + ⌊m2/n⌋

= n−m2 + n2p + 2nc + ncr − 1 + ⌊m2/n⌋. (12)

This formula was derived in [4] when there are not CPs in Ch±
q (deg+c = 0), all CPs

are of the first order (deg+r = 2ncr) and nc = 0. Then it can be rewritten as

ncr = n2p + n∞ − 1 + ⌊m2/n⌋ = n2p + n−m2 − 1 + ⌊m2/n⌋.

http://www.journals.vu.lt/LMR
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Corollary 1. The number of edges is

e = 2n∞ + np + n2p + ncr + 2nc − 1 + ⌊m2/n⌋
= 2n−m2 − 2− nce + n2p + ncr + 2nc + ⌊m2/n⌋ (13)

Remark 1. In the case m2 < n the formulas (9)–(13) are

v = m2 − nce − n2p + ncr + 2n+
cr,

e = 2n−m2 − 2− nce + n2p + ncr + 2nc,

f = 2(n−m2 + n2p + nc − n+
cr),

deg+r +deg+c = n−m2 − 1 + n2p + 2nc + ncr,

where nce is defined by (7).
In the case m2 = n we have n∞ = 0, np = n − 1 − nce and n2p = 0, ncr = 0

(so, deg+r = 0) (see [4]). In this case we get deg+c = 2nc = 0 and n+
cr = 0. Thus, for

m2 = n the following formulas

v = n− 1− nce,

e = n− 1− nce,

f = 2

are valid. Note, that in this case we have Cycle digraph.

Remark 2. If n+
cr = 0 (deg+c = 0) then deg+r −ncr = 2nc + n − m2 + n2p − 1 > ncr

shows that there are exist CPs in Rh
q of the second or the higher order.
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REZIUMĖ

Diskrečiojo Šturmo ir Liuvilio uždavinio su nelokaliosiomis kraštinėmis sąlygomis
spektrinių kreivių ir grafų teorijos sąsajos. II

J. Vitkauskas, A. Štikonas
Šiame straipsnyje pristatomos sąsajos tarp diskrečiojo Šturmo ir Liuvilio uždavinio su nelokaliąja
integraline kraštine sąlyga (poliai, kritiniai taškai ir spektrinės kreivės) bei grafų charakteristikų
(viršūnės, briaunos ir veidai). Ankstesnis straipsnis buvo skirtas Sturmo ir Liuvilio uždaviniui su
dvitaškėmis nelokaliosiomis kraštinėmis sąlygomis.
Raktiniai žodžiai : Šturmo ir Liuvilio uždavinys; spektrinės kreivės; integralinė kraštinė sąlyga; grafai
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