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Abstract. In this article we focus on the problem of supervised classifying of the spatio-
temporal Gaussian random field observation into one of two classes, specified by different
mean parameters. The main distinctive feature of the proposed approach is allowing the
class label to depend on spatial location as well as on time moment. It is assumed that the
spatio-temporal covariance structure factors into a purely spatial component and a purely
temporal component following AR(p) model. In numerical illustrations with simulated data,
the influence of the values of spatial and temporal covariance parameters to the derived error
rates for several prior probabilities models are studied.
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Introduction

Spatial supervised classification is a problem of labeling observations based on fea-
ture information and information about spatial adjacency relationships with training
sample. This problem has been studied by numerous authors (see e.g. Atkinson
and Lewis [1]). However, these studies are usually based on the assumption of con-
ditional independence of feature observations. Comprehensive overview of methods
for statistical classification and discrimination of Gaussian spatial data is provided
by Berrett and Calder [3]. The novel approach to classification of Gaussian Random
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Field (GRF) observation by avoiding the assumption of conditional independence is
developed by Dučinskas and Dreižienė [5]. However, statistical discriminant analy-
sis of spatio-temporal data has been rarely considered previously. Šaltytė-Benth and
Dučinskas [8] considered classification of spatio-temporal data modeled by GRF in
particular case when observation of feature at focal location is uncorrelated with the
training sample.

In the present paper, avoiding independence restrictions, we focus on the classi-
fication of data modeled by random fields with separable spatio-temporal covariance
structures specified by geostatistical spatial margins and discrete temporal margins
(see e.g. [4]). Separability of covariances was assumed for the sake of reduction of
complexity due to interdependencies between features.

The main distinctive feature of the proposed approach is allowing the class label
to depend on spatial location as well as on time moment. That essentially widens the
application area of presented investigations.

For the performance of classifiers, the values of derived in Local Bayes error
rates and empirical error rates are used. For numerical illustrations, the exponential
isotropic models for spatial covariance and AR(p) model of temporal covariance are
considered. This is the extension of AR(1) case explored in Karaliutė and Dučinskas
[7]. Performance of proposed classification rule is compared for various parameters of
pure spatial and temporal covariances and prior class probabilities models.

This paper is organized as follows: proposed spatio-temporal data models and
conditional distributions are delivered in the next section; in Section 2 conditional
Bayes classification rule and its error rates are presented; in Section 3 the numerical
illustrations and simulations for various separable stationary spatio-temporal covari-
ance and prior probabilities models are displayed, and finally, the conclusions are in
the last section.

1 Spatio-temporal data models and conditional distributions

The main objective of this paper is to classify feature observations of GRF {Z(s; t) :
s ∈ D ⊂ R2, t ∈ DT = [0,∞]}, where s and t define spatial and temporal coordinates,
respectively. Let {Y (s; t) : s ∈ D ⊂ R2, t ∈ DT } be a random field that represents
class label and takes only the value 0 or 1.

In this study, we assume that for l = 0, 1 the model of observation Z(s; t) con-
ditional on Y (s; t) = l is Z(s; t) = µl(s; t) + ε(s; t), where µl(s; t) – deterministic
spatio-temporal drift. The error term is assumed to be generated by the univariate
zero-mean GRF {ε(s; t) : s ∈ D ⊂ R2, t ∈ T}, with the separable spatio-temporal
covariance model cov(ε(s; t), ε(u; r)) = C(s, u; t, r) for all s, u ∈ D and t, r ∈ T .

Here CS(s, u) denotes pure spatial covariance between observations in locations s
and u and CT (t, r), denotes pure temporal covariance between observations at time
points t and r. Under this assumption, the spatio-temporal covariance structure
factors into a purely spatial and a purely temporal component, which allows for
computationally efficient estimation and inference.

In this study we follow the popular tradition in environmental and agricultural
research when the data are recorded at regular time intervals (time lags) and at
irregular stations (locations) in compact area (see e.g. [2, 6]).
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Let Sn = {si ∈ D; i = 1, . . . , n} be a set of locations where observations are taken
at time t ∈ Dm = {1, 2, . . . ,m,m + 1}. At every moment of time t ∈ Dm, the set
Sn is split into two classes, S(0)

t and S
(1)
t (i.e., Sn = S

(0)
t ∪ S(1)

t ): S(l)
t = {s ∈ Sn :

Y (s, t) = l}, l = 0, 1. Denote nlt the number of locations (of n) at time t that belong
to class l; thus nlt is the number of points in the set S(l)

t , and n = n0t + n1t for every
t ∈ Dm. Hence a set of class labels at any time moment can differ in composition.

Joint training sample Z is stratified training sample, specified by n × m ma-
trix Z = (Z1, . . . , Zm), where Zt = (Z(s1, t), . . . , Z(sn, t))

′. This structure of data
presentation is motivated by a model that assumes multivariate (in space) time se-
ries. Denote by zt = (z1t , . . . , z

n
t ) and yt = (y1t , . . . , y

n
t ) the realized value of Zt and

Yt = (Y (s1, t), . . . , Y (sn, t))
′, respectively.

In this study we consider the linear parametric drift µl(s; t) = β′lx(s), where xi =
(x1(si), . . . , xq(si))

′ is the vector of a spatial covariates, and βl is a q dimensional
vector of parameters, i = 1, . . . , n, l = 0, 1 and ∆β = β1 − β0.

Denote by X the n× 2qm matrix X =
(
X(1), X(2), . . . , X(m)

)
where

X(t) =




x′1(1− y1t ) x′1y
1
t

x′2(1− y2t ) x′2y
2
t )

...
...

x′n(1− ynt ) x′ny
n
t


 .

Then the matrix model for Z conditional on {Yt = yt, t = 1, . . . ,m} is Z =
XB + E, where B = Im ⊗ β with β = (β′0, β

′
1)
′, and n × m matrix of Gaussian

errors E = (ε(si; t) : i = 1, . . . , n; t = 1, . . . ,m). Here Im is m ×m identity matrix,
and β is 2q × 1 vector of parameters. Under covariance separability assumption
vec(E) ∼ Nnm(CT ⊗ Cs) with CT = (ctrT = CT (t, r); t, r = 1, . . . ,m) denoting the
m×mmatrix of pure temporal covariances and CS = (cijS = CS(si, sj); i, j = 1, . . . , n)
denoting the n× n matrix of pure spatial covariances.

In present paper we are dealing with the problem of classification of the observa-
tions Z(si,m+1), i = 1, . . . , n into one of two classes with given joint training sample
Z or, in other words, based on training sample information we want to predict label
at an observed location at the time moment t = m + 1. Set cm+1,r

T = CT (m + 1, r);
r = 1, . . . ,m, cm+1

T = (cm+1,1
T , . . . , cm+1,p

T )′ and e′i – the ith row of identity matrix In.
Under spatio-temporal data model specification, we can conclude that in l = 0, 1,

the conditional distribution of Z(si,m + 1) given Z = z and Y (si;m + 1) = l, is
Gaussian, i.e.,

(
Z(si,m+ 1)

∣∣Z = z; Y (si; m+ 1) = l
)
∼ N

(
µm+1
li(z) , Σm+1,i(z)

)
, (1)

where Σm+1,i(z) = var(Z(si,m+1))− ciis (cm+1
T )′C−1T cm+1

T = ciiSρm+1, µm+1
li(z) = β′lxi+

((cm+1
T )′C−1T ⊗ e′i)vec(E) with ρm+1 = cm+1,m+1

T − (cm+1
T )′C−1T cm+1

T .
In this study, we assume that the conditional distribution of label Y (si,m + 1),

i = 1, . . . , n, given joint training sample Z depends only on class labels values, i.e.
conditional distribution of (Y (si,m + 1) = l | Z = z) is identical to conditional
distribution of (Y (si,m + 1) = l | {Yt = yt, t = 1, . . . ,m}). Set P (Y (si,m + 1) = l |
Z = z) = πl(si,m+1), l = 0, 1, and, for simplicity, call them prior class probabilities.
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2 Conditional Bayes discriminant functions and its error rates

Under the assumption that the classes are completely specified, the conditional Bayes
discriminant function (CBDF) minimizing the probability of misclassification is formed
by the log-ratio of conditional likelihood of distribution specified in (1), that is

WZ

(
Z(si,m+ 1)

)

=

(
Z(si,m+ 1)−

µm+1
1i(z) + µm+1

0i(z)

2

)
Σ−1m+1,i(z)

(
µm+1
1i(z) − µm+1

0i(z)

)
+ γi(m+ 1), (2)

where γi(m+ 1) = ln(π1(si,m+ 1)/π2(si,m+ 1)).
Let us call the probability of misclassification for WZ(Z(si,m+1)) as Local Bayes

error rate and denote it by Pi. Also let us denote squared Mahalanobis distance
between conditional distributions by

∆2
m+1,i(z) =

(
µm+1
1i(z) − µm+1

0i(z)

)′
Σ−1m+1,i(z)

(
µm+1
1i(z) − µm+1

0i(z)

)
. (3)

Specific attention is given to the Gaussian spatio-temporal model with pure spatial
covariances belonging to the family of powered-exponential isotropic models and with
pure temporal covariance of stationary AR(p) model.

Lemma 1. The Local Bayes error rate is

Pi = π0(si,m+ 1)Φ(Q0i) + π1(si,m+ 1)Φ(Q1i),

where Φ(x) is the standard normal cumulative distribution function and

Qli −
∆m+1,i(z)

2
+ (−1)l γi(m+ 1)

∆m+1,i(z)
, ∆2

m+1,i(z) =
(
(∆β)′xi

)2/
ciis σ

2
T , l = 0, 1.

Proof. It is known that for AR(p) model parameters quantify the temporal depen-
dency and for t = 1, 2, . . . ,m+1, ct,tT = CT (0) = σ2

T +Σp
j=1αjCT (j), where σ2

T is the
variance of the temporal white noise.

Then µm+1
li(z) = β′lxi + ((0, . . . , 0, αp, . . . , α1)

′ ⊗ e′i)vec(E) and Σm+1,i(z) = ciiSσ
2
T .

By using the properties of multivariate Gaussian distribution and inserting the
above expressions in formula (3) we complete the proof of Lemma 1. ut

Error estimation is critical to classification because the validity of the resulting
classifier model, composed of the classifier and its error estimate, is based on the
accuracy of the error estimation procedure. Given a set of sample data, the data
can be split between training and test data, with a classifier being designed on the
training data and its error being validated on the test data. In this paper our focus
is on using p temporal observations for training and the observations at m+1th time
moment is using for testing.

3 Numerical illustrations and simulations

For numerical illustrations of the proposed classifier performance, we considered the
Gaussian spatio-temporal model with pure spatial exponential covariances and with
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r(|si − sj |) = e−|si−sj |/φ. Here φ is the so called range parameter that represents the
spatial dependence.

This choice of is based on the smoothness level of sample paths. Sample paths of
a GRF with the exponential covariance function are not smooth, when the squared
exponential covariance model has smooth sample paths.

Two methods for prior class probabilities is proposed.
First one is based on Temporal Weighted Moving Average (TWMA) method

π1t(si,m+1) =
∑m

t=1 yt
it

(1+m)m/2 . Second one adds spatial correlations for weighting π1ts(si,m+

1) =
∑m

t=1 yt
it+

∑m
t=1 yt

i0
trii0

(1+m)m/2+rii0 (1+m)m/2 , where i0 denotes the index of the nearest neighbor to si.
Denote this method by (STWMA). We have compared these four particular cases by
calculating the Pi for i = 1, ..., n. Numerical illustrations performed on 20 locations
in two dimensional Euclidean area with ⃝ and ■ for label indicators are depicted in
Figure 1.

Fig. 1. Spatial sampling set S20 at moment T = 1.

The averages AP =
∑20

i=1 Pi/20 for two models of prior probabilities and for
ϕ = 2.5 and various α1 at moment t = 5 are presented in Figure 2. As it might be
seen from Figure 2, incorporation spatial correlation in class prior probabilities (i.e.
method STWMA) does not have advantage against method TWMA for almost all
values of parameter α1.

4 Conclusions

In this paper we propose approach to classification of spatio-temporal data in the
framework of Bayes discriminant analysis for separable spatio-temporal covariances.
Several simulation studies were conducted to estimate and compare empirically the
classifiers for particular separable stationary spatio-temporal covariance and various
prior class probabilities models. Numerical analysis showed that there is no reason to
incorporate spatial correlation in the prior probabilities since it does not improve the
performance of the proposed classifier.
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Fig. 1. Spatial sampling set S20 at moment T = 1.

pure temporal covariance stationary AR(1) model. Then it is easy to derive that
(cm+1

T )′C−1T = (0, . . . , 0, α1).
In the study, the exponential isotropic nugetless spatial covariance is considered.

So Cs = σ2
sR, where R = (rij) denotes the spatial correlation matrix with rij =

r(|si− sj |) = e−|si−sj |/ϕ. Here ϕ is the so called range parameter that represents the
spatial dependence.

This choice is based on the smoothness level of sample paths. Sample paths of
a GRF with the exponential covariance function are not smooth, when the squared
exponential covariance model has smooth sample paths.

Two methods for prior class probabilities is proposed.
First one is based on Temporal Weighted Moving Average (TWMA) method

π1t(si,m+ 1) =

∑m
t=1 y

t
it

(1 +m)m/2
.

Second one adds spatial correlations for weighting

π1ts(si,m+ 1) =

∑m
t=1 y

t
it+

∑m
t=1 y

t
i0
trii0

(1 +m)m/2 + rii0(1 +m)m/2
,

where i0 denotes the index of the nearest neighbor to si. Denote this method by
(STWMA). We have compared these four particular cases by calculating the Pi for
i = 1, . . . , n. Numerical illustrations performed on 20 locations in two dimensional
Euclidean area with ◦ and � for label indicators are depicted in Fig. 1.

The averages AP =
∑20

i=1 Pi/20 for two models of prior probabilities and for
φ = 2.5 and various α1 at moment t = 5 are presented in Fig. 2. As it might be
seen from Fig. 2, incorporation of spatial correlation in class prior probabilities (i.e.
method STWMA) does not have advantage against method TWMA for almost all
values of parameter α1.

4 Conclusions

In this paper we propose approach to classification of spatio-temporal data in the
framework of Bayes discriminant analysis for separable spatio-temporal covariances.
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Fig. 2. Average Bayes error rates for φ = 2.5 and various α1 at moment t = 5.
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Several simulation studies were conducted to estimate and compare empirically the
classifiers for particular separable stationary spatio-temporal covariance and various
prior class probabilities models. Numerical analysis showed that there is no reason to
incorporate spatial correlation in the prior probabilities since it does not improve the
performance of the proposed classifier.
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