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Gabrielė Mongirdaitė , Vigirdas Mackevičius

Institute of Mathematics, Vilnius University
Naugarduko 24, LT-03225 Vilnius
E-mail: gabriele.mongirdaite@mif.vu.lt; vigirdas.mackevicius@mif.vu.lt

Received July 10, 2021; published online December 15, 2021

Abstract. We construct weak approximations of the Wright-Fisher model and illustrate
their accuracy by simulation examples.
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Introduction

We consider Wright–Fisher process defined by the stochastic differential equation

dXx
t =

(
a− bXx

t

)
dt+ σ

√
Xx

t

(
1−Xx

t

)
dBt, Xx

0 = x, (1)

where B is a standard Brownian motion, 0 ⩽ a ⩽ b, σ > 0, and x ∈ [0, 1].
The Wright–Fisher model (Fisher 1930; Wright 1931) takes the values in the inter-

val [0, 1] and explicitly accounts for the effects of various evolutionary forces – random
genetic drift, mutation, selection – on allele frequencies over time. This model can
also accommodate the effect of demographic forces such as variation in population
size through time and/or migration connecting populations [5].

In this note, we present a simple first-order weak approximation of the solution of
Eq. (1) by discrete random variables that take two values at each approximation step.
Recall the definition of such an approximation. By a discretization scheme with time
step h > 0 we mean any time-homogeneous Markov chain X̂h = {X̂h

kh, k = 0, 1, . . . }.
We say that a family of discretization schemes X̂h, h > 0, is a first-order weak
approximation of the solution Xx of (1) in the interval [0, T ] if∣∣Ef(X̂h

T

)
− Ef

(
Xx

T

)∣∣ ⩽ Ch, h =
T

N
⩽ h0, (2)
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for a “sufficiently wide” class of functions f : [0, 1] → R and some constants C and
h0 > 0 (depending on the function f), where N ∈ N. Note that because of the
Markovity, the one-step approximation X̂h

h completely defines (in distribution) a weak
approximation X̂h

kh, k = 0, 1, . . . . Thus, with some ambiguity, we also call it an
approximation and denote it by X̂x

h , with x indicating its starting point.
In our context, we introduce the following “sufficiently wide” function class of

infinitely differentiable functions with “not too fast” growing derivatives:

C∞
∗ [0, 1] :=

{
f ∈ C∞[0, 1] : lim sup

k→∞

1

k!
sup

x∈[0,1]

∣∣f (k)(x)
∣∣ < ∞

}
.

We easily see that all functions from this class can be expanded by the Taylor series in
the interval [0, 1] around arbitrary x0 ∈ [0, 1] (which, in fact, converges on the whole
real line R) and contain, for example, all polynomials and exponential functions.

Approximation

Let us first construct an approximation for the “stochastic” part of Wright–Fisher
equation, that is, the solution Sx

t of Eq. (1) with a = b = 0. Similarly to [4] (see also
[3]), we look for an approximation Ŝx

h as a two-valued discrete random variable taking
values x1,2 ∈ [0, 1] with probabilities p1,2 such that

E
(
Ŝx
h − x

)
= 0, x ∈ [0, 1], (3)

E
(
Ŝx
h − x

)2
= σ2x(1− x)h+O

(
h2

)
, x ∈ [0, 1], (4)∣∣E(Ŝx

h − x
)3∣∣ = O(h2), x ∈ [0, 1], (5)

E
[(
Ŝx
h − x

)4]
= O(h2), x ∈ [0, 1]. (6)

By solving the equation system (3)–(4) with respect to x1, x2, p1, p2, we get the solu-
tion

x1 = x+ (1− x)σ2h−
√(

x+ (1− x)σ2h
)
(1− x)σ2h, x ∈ [0, 1], (7)

x2 = x+ (1− x)σ2h+
√(

x+ (1− x)σ2h
)
(1− x)σ2h, x ∈ [0, 1] (8)

with p1,2 = x
2x1,2

. It also satisfies conditions (5)–(6). However, for the values of x

near 1, the values of x2 a slightly greater than 1, which is unacceptable. We overcome
this problem by using the symmetry of the solution of the stochastic part with respect
to the point 1

2 ; to be precise, Sx
t

d
= 1 − S1−x

t . Therefore, in the interval [0, 1/2], we
can use the values x1,2 defined by (7)–(8), whereas in the interval (1/2, 1], we use the
values corresponding to the process 1− Ŝ1−x

t , that is,

x̂1,2 = x̂1,2(x, h) := 1− x1,2(1− x, h) = x− xσ2h±
√(

1− x+ xσ2h
)
xσ2h (9)

with probabilities p̂1,2 = 1−x
2x1,2(1−x,h) . Thus we obtain a correct (i.e., with values in

[0, 1]) approximation Ŝx
h taking the values

x̃1,2 :=

{
x1,2(x, h) with probabilities p1,2 = x

2x1,2(x,h)
, x ∈ [0, 1/2],

1− x1,2(1− x, h) with probabilities p1,2 = 1−x
2x1,2(1−x,h) , x ∈ (1/2, 1].
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Now for the initial equation (1), we obtain an approximation X̂x
h by a simple “split-

step” procedure (again, see, e.g., [4] or [3]):

X̂x
h := Ŝx

he
−bh +

a

b

(
1− e−bh

)
. (10)

Now we can state the following:

Theorem 1. Let X̂x
t be the discretization scheme defined by one-step approxima-

tion (10). Then X̂x
t is a first-order weak approximation of equation (1) for functions

f ∈ C∞
∗ [0, 1].

Backward Kolmogorov equation

The constructed approximation is in fact a so-called potential first-order weak approx-
imation of Eq. (1) (for a definition, see, e.g., Alfonsi [1], Section 2.3.1). The proof
that, indeed, it is a first-order weak approximation, is based on the following:

Theorem 2. Let f ∈ C∞
∗ [0, 1]. The u(t, x) := Ef(Xx

t ) is a C∞ function on [0, 1]×R
that solves the backward Kolmogorov equation

∂tu(t, x) = Au(t, x), x ∈ [0, 1], t ⩾ 0.

In particular,

∀T > 0, ∀ l,m ∈ N, ∃Cl,m :
∣∣∂l∂mu(t, x)

∣∣ ⩽ Cl,m, t ∈ [0, T ], x ∈ [0, 1].

Such theorem is stated for f ∈ C∞[0, 1] in [1, Thm. 6.1.12], based on the results
of [2]. Our class of functions f is slightly narrower, but our proof of the theorem
is significantly simpler and is based on the estimates of the moments of Xx

t , which
show that they grow slower than factorials. The recurrent relations of the moments
E[(Xx

t )
k] show that they are infinitely differentiable with respect to t and x, which

allows us to infinitely differentiate the series

u(t, x) = Ef
(
Xx

t

)
=

∞∑
k=0

ckE
[(
Xx

t

)k]
termwise with respect to t and x, where f(x) =

∑∞
k=0 ckx

k is the Taylor expansion
of f .

Simulation examples

We illustrate our approximation for f(x) = x4 and f(x) = exp{−x}. Since we
do not explicitly know the moments E exp{−Xx

t }, we use the approximate equality
exp{−x} ≈ 1− x+ x2

2 − x3

6 + x4

24 . In Figs. 1 and 2, we compare the moments Ef(X̂x
t )

and Ef(Xx
t ) as functions of t (left plots, h = 0.001) and as functions of discretization

step h (right plots, t = 1). As expected, the approximations agree with exact values
pretty well.
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Fig. 1. Comparison of Ef(X̂x
t ) and Ef(Xx

t ) as functions of t and h for f(x) = x4: x = 0.815,
σ2 = 0.5, a = 4, b = 5, the number of iterations N = 500.000.
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Fig. 2. Comparison of Ef(X̂x
t ) and Ef(Xx

t ) as functions of t and h for f(x) = exp{−x}: x = 0.36,
σ2 = 0.6, a = 3, b = 4, N = 100.000.
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REZIUMĖ

Wright–Fisher lygties silpnosios aproksimacijos

G. Mongirdaitė, V. Mackevičius
Sukonstruota silpnoji pirmos eilės aproksimacija stochastinei Wright–Fisher lygčiai. Pavyzdžiais
iliustruojamas jos tikslumas.
Raktiniai žodžiai : Wright–Fisher modelis; modeliavimas; silpnoji aproksimacija
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