
Liet. matem. rink, 45, spec. nr., 2005, 174–179

The use of formal languages for business rules
realisation in information systems

Olegas VASILECAS, Evaldas LEBEDYS (VGTU)
e-mail: olegas@fm.vtu.lt, evaldas@isl.vtu.lt

1. Introduction

Business rules approach became the object of many researches in recent years. Rules
are important components of every system. The whole of business rules make a policy
of particular system. A policy describes the conditions under which actions are permit-
ted or forbidden [2]. There are many different business rules in each business system.
Business rules are classified differently for different purposes [11]. Business rules of
different classes are represented differently in business system model. There are many
modelling languages suitable to represent some set of business rules but the dominant
opinion is that there is no single modelling language suitable to model all business
rules. Even if some modelling language can be used to represent all business rules,
the created business rules model may become hard to understand [12]. The need of
different representations of business rules is also widely discussed in the papers of re-
cent years. Business audience prefer informal business rules specification [8]. Formal
business rules specification is needed for automated business rules implementation in
information systems [1]. It is difficult to create abstract, informal business rules speci-
fication suitable for automated implementation. We propose to create formal business
rules specification using information about business rules represented in UML dia-
grams. Formal business rules specification is proposed to be created using first order
logic constructions. The way business rules of different classes are expressed formally
is presented in the paper.

The rest of the paper is organised as follows. The second section shortly discusses
business rules classification and presents the classes of business rules analysed further
in the paper. Section 3 briefly analysis the use of Unified Modelling Language for
representation of business rules of different classes. Section 4 shortly describes the
elements of first order logic used to create formal business rules statements. Section 5
presents the way business rules are expressed formally using first order logic. Section
6 concludes the paper.

2. Business rules classification

Business rules can be classified using different taxonomies [6]. Business rules classifi-
cation depends on the point of view business rules are classified. Business rules can be



The use of formal languages for business rules realisation in information systems 175

classified according to the way business rules are implemented in information systems
[5]. Different classes of business rules can be distinguished while analysing modelling
languages most suitable for specific kinds of business rules. Business rules may also
be classified according to the structure of rules statements. We distinguish classes of
business rules according to the way business rules influence business. There are three
main classes of business rules:

• business rules describing the roles and obligations of system actors;
• business rules specifying and constraining the structure of the systems objects

and the relationships between these objects;
• business rules describing the behaviour of business system objects and actors.

The representation of business rules of these classes is discussed further.

3. Business rules representation

There are many modelling languages, having both graphical and textual notations, suit-
able to model business rules of different classes: Unified modelling language (UML),
IDEF, entity relationship diagrams, conceptual graphs, decision trees, decision tables,
first order logic and so on [11]. Formal methods for specifying design patterns, ex-
tensions of existing modelling languages and new business rules modelling languages
are proposed [3], [4]. But there is no single modelling language suitable to model all
business rules. UML has become the most widely used modelling language for busi-
ness systems and information systems modelling in recent years [9]. Business rules
appear in different UML diagrams. Not all business rules can be represented in UML
diagrams. Some complex logic describing business rules are hardly represented using
graphical notations. Formal methods, such as first order logic can be used to represent
rules describing complex logic [12].

Business rules of different classes are represented in different UML diagrams
(Fig. 1):

• business rules expressing the roles and obligations of system actors are repre-
sented in Use Case diagrams;

• business rules specifying and constraining the structure of the systems objects
and the relationships between these objects are represented in UML classes and
objects diagrams;

• business rules specifying the behaviour of business system objects and actors
are represented in sequence, collaboration, activity and state transition diagrams.
Sequence and collaboration diagrams contain the same business rules and are not
analysed separately in this paper.

Use Case diagrams are used to present the tasks assigned to different actors of the
system of interest. Business rules in Use Case diagrams appear as statements describ-
ing system actors obligations.

Class diagrams are used to represent classes of objects. Classes are aggregates of
objects which are used as variables in predicates when specifying business rules for-
mally. In other words, classes are the sets of business objects.

Sequence and collaboration diagrams are used to represent the sequence of actions
and operations needed to perform particular task. State transition diagrams are used to



176 O. Vasilecas, E. Lebedys

Fig. 1. Specification of business rules resented in UML diagrams.

specify the sequences of changes of states of business objects. Activity diagrams are
used to model the logic of the operations captured by a use case or a few use cases.
Activity diagrams can be used to represent both the basic sequence of actions as well
as the alternate sequence of actions.

UML contains other diagrams: package, component and deployment diagrams.
These diagrams are not discussed in this paper as they are used to represent aspects
of the development and implementation of software systems and the purpose of this
paper is to discuss rules appearing in business system models.

4. First order logic

The language of first order logic is built on objects and relations. Facts about the ob-
jects can also be expressed using first order logic. Generally, first order logic is used to
represent facts, objects and relationships [10]. We use nouns in natural language which
refer to objects in first order logic. For example, a manager, a client, an invoice, a car
and so on. Verbs in the natural language refer to relations among objects. For example,
is employed, has credit, is red and so on. Some of these relations are functions. Func-
tions are the relations which have only one value for the particular input. Relations can
be unary, binary and polynomial. A sentence is a formula which has no free variables
[7].

The basic syntactic elements of first order logic are the symbols used to specify
objects, relations and functions. These symbols are [10]:

• constant symbols – are used to represent objects;
• predicate symbols – are used to represent relations;
• function symbols – are used to represent functions.



The use of formal languages for business rules realisation in information systems 177

The statements in first order logic are expressed in sentences. Sentences may be:
• atomic sentence;
• complex sentence – a sentence composed of a two or more atomic sentences;
• quantifier Variable,... Sentence;
• negation of a sentence.
Atomic sentences are formed as:
• predicate(Term, ...);
• Term=Term.
Term is one of the: Function, Constant, Variable.
Complex sentences are formed from atomic sentences using connectives. A few

connectives are used in first order logic uses: “If ... Then ...”, “And” “Or”, “If and only
If”. Quantifiers are used to form sentences and are “For all” and “Exists”. Constants
specify objects. Variables are the elements which value may change and it impacts the
output. Predicates are used to specify relations and generally may become true or false
depending on the particular situation. Functions are used to represent relations which
may return any value.

5. Business rules formal representation

Business rules are expressed using first order logic as sentences, both atomic and com-
plex. All basic syntactic elements of first order logic can be used to express business
rules. Only business rules of classes specified above are analysed in this paper. Busi-
ness rules of various classes have different structure. Business rules of different classes
are represented formally using different syntactic templates [12]. This means that all
business rules of particular class can be specified using some set of syntactic templates.
Templates for expressing formally business rules represented in UML diagrams are
presented further.

Business rules represented in Use Case diagrams can be expressed formally de-
pending on the way tasks are assigned to actors. For example, a fragment of Use Case
diagram can be interpreted in either of two ways “Bookkeeper has to register the in-
voice“ or “Bookkeeper may register the invoice“. The role has to be declared, to ex-
press business rules. Business rules appearing in Use Case diagrams can be expressed
using predicate P1 = Has_to(A,T) and is read as “Actor A has to perform task T”.

Class model includes business rules representing constraints of business objects,
properties of relationships between business objects. Rules describing the properties of
relationships between classes can be described using predicate: P2 = Related(C1,C2)
where predicate is “Each object of class C1 must be related to some object of class
C2”. The rules describing allowable ranges of values for objects properties can be
described using predicate P3 = (o∈C) o.property <,>,=,=/ P, where “o” is an object,
“C” is class of objects, “o.property” is concrete property of an object, “P” is parameter
(constant value).

Event-Condition-Action (ECA) rules are mostly represented in state transition dia-
grams. Such a rule can be expressed formally using a predicate of a special form: P3
= (E, C, A1, A2) where predicate is “On event E, if condition C, then action A1, else
action A2”. This kind of predicate is used to represent ECA rules.



178 O. Vasilecas, E. Lebedys

Activity diagrams mostly contain ECA business rules. Rules represented in activity
diagrams are represented formally in the same way as business rules represented in
state transition diagrams. Mostly business rules represented in activity diagrams can
be expressed formally using predicate P4 = (A1,C1,A2) where predicate is “When
action A1 is performed, if condition C1 is/is not satisfied, then action A2 is performed.

Generally, sequence and collaboration diagrams include business rules describing
the exact order of actions for a user to be taken to perform specific task. A predicate of a
special form is used for describing rules specified in sequence diagrams. For example,
predicate “An action A2 is performed after actions A1 is done” is expressed formally
as P5 = (A1, A2).

6. Conclusions

Business rules approach is important because business rules influence almost all as-
pects of business systems. Literature analysis showed that business rules can be clas-
sified differently depending on the purpose business rules are analysed with. Business
rules of different classes can be represented using different modelling languages. The
choice of the modelling language depends on the purpose of the model. We proposed
to create formal business rules specification using first order logic constructions. We
also presented syntactic templates used to express business rules represented in UML
diagrams formally. First order logic elements were used to create syntactic templates.
The tool implementing proposed above is under development.

References

1. D. Bevington. ASL – a formal language for specifying a complete logical system model (Zachman
row 3) including business rules, Business Rules Journal, 5 (1) (2004).
http://www.BRCommunity.com/a2004/b167.html. Retrieved on 2004.05.10 13:21.

2. J.Y. Halpern, V. Weissman, Using first-order logic to reason about policies, in: Proceedings of 16th
IEEE Computer Security Foundations Workshop (CSFW’03), IEEE Computer Society Press (2003),
pp. 187–201.

3. C.E. Hughes, A. Orooji, D.R.E. Williams, A mathematical formalism for specifying design patterns,
in: Proceedings of 17th International Symposium on Computer and Information Sciences (ISCIS
XVII), Orlando, FL, Oct. 28–30 (2002).

4. A. Kovacic, The rule transformation approach to business renovation, Business Rules Journal, 4 (8)
(2003). http://www.BRCommunity.com/a2003/b162.html. Retrieved on 2005.04.28.

5. J. Laucius, E. Lebedys, O. Vasilecas, Realisation of event-condition-action rules using active database
system triggers, Information Sciences, Vilnius University, 129–133 (2003) (in Lithuanian).

6. J.C.S.P. Leite, Ma. Carmen Leonardi, Business rules as organizational policies, in: IEEE IWSSD9:
Ninth International Workshop on Software Specification and Design, IEEE Computer Society Press
(1998), pp. 68–76.

7. D. Marker, An Introduction to Model Theory, Springer-Verlag (2001).
8. T. Morgan, Business Rules and Information Systems: Aligning IT with Business Goals, Addison-

Wesley Pub Co (2002).
9. G. Sparks, An Introduction to Modelling Software Systems Using the Unified Modelling Language:

The Dynamic Model.
http://www.sparxsystems.com.au/WhitePapers/The_Dynamic_Model.pdf.
Retrieved on 2005.04.20.



The use of formal languages for business rules realisation in information systems 179

10. J.R. Stuart, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, Upper Saddle River,
New Jersey, second edition (2003).

11. O. Vasilecas, E. Lebedys, Formal business rules specification for automation of engineering process.
To be published in the Proceedings of the 19th International Conference “Systems for Automation of
Engineering and Research” (SAER’2005), Varna, Bulgaria (2005).

12. O. Vasilecas, E. Lebedys, J. Laucius, Formal methods for representation of business rules specified
using UML, in: R. Simutis (Ed.), Proceedings of the International Conference ”Information Tech-
nologies for business – 2005”, Kaunas, Technologija, pp. 41–47.

REZIUMĖ

O. Vasilecas, E. Lebedys. Formali
↪

u kalb
↪

u panaudojimas verslo taisykli
↪

u realizacijai informacinėse
sistemose

Paskutiniu metu vykdoma daug tyrim ↪u informacini ↪u sistem ↪u modeliavimo verslo taisykli ↪u požiūriu kryp-

timi. Sistem
↪

u modeliavimas taisykli
↪

u požiūriu naudingas, siekiant automatizuoti program
↪

u sistem
↪

u kūrimo

proces
↪
a. Literatūroje vyrauja nuomonė, kad nėra vienos modeliavimo kalbos, tinkančios sukurti išsam

↪
u

koncepcin
↪
i dalykinės srities model

↪
i ir aprašyti vis

↪
u klasi

↪
u verslo taisykles. Norint automatizuoti program

↪
u

sistem ↪u kūrimo proces ↪a, reikalinga formali verslo taisykli ↪u specifikacija, tinkama tolimesniam automa-

tizuotam apdorojimui. Darbe siūlome informacijos apdorojimo taisykles užrašyti naudojant pirmos eilės

predikat ↪u logikos sakinius. Darbe pavaizduota, kaip skirtingose UML diagramose pavaizduotos verslo

taisyklės gali būti išreikštos formaliai, tai yra pateikti sintaksiniai šablonai suformuoti naudojant pirmos

eilės predikat
↪

u logikos konstrukcijas.


