
Liet. matem. rink, 45, spec. nr., 2005, 321–325

Efficient decision procedure for Belief modality

Adomas BIRŠTUNAS (VU)
e-mail: adomo@takas.lt

Abstract. This paper defines decision algorithm for subclass of BKD45DKDIKD logic which is based on
known algorithm for temporal BKD45DKDIKD logic ([2]). BDI logics are widely used in agent based
systems. Such usage of BDI logic can be found in [1]. The original decision algorithm uses loop-check
technique for BEL and temporal operators. Applied loop-check technique is not optimized and therefore
loop-check takes most of the time used in decision algorithm. Some examples of efficient loop-check
applications for logic KT, S4 and some subclasses of intuitionistic logic can be found in [4]. Another
efficient loop-check can be found in work [3]. We concentrate on our attitude on loop-check optimization
for BEL operator. This paper defines decision algorithm modification, which uses efficient loop-check for
BEL operator, but do not effect performance of other parts of algorithm. We define optimization only for
BEL operator and therefore we omit temporal operators in this paper.

Keywords: BDI logic, loop-check, sequent calculus..

1. Definition of researched subclass

Researched subclass of BKD45DKDIKD logic are described as follows:
Let P be a set of all propositional symbols. If p is a primitive preposition (p ∈ P ),

then p is formula, if φ, ψ are formulas, then ¬φ, φ ∨ ψ , BEL(φ) are also formulas.
Formulas φ ∧ ψ , φ ⊃ ψ , φ ⇔ ψ are abbreviations of ¬(¬φ ∨ ¬ψ), ¬φ ∨ ψ , (φ ⊃
ψ) ∧ (ψ ⊃ φ) respectively.

We use common Kripke ’possible worlds’ semantics. In other words, we will oper-
ate with all BDI logic formulas those do not contain INT END or DESIRE modal-
ities. INT END, DESIRE are omitted because of the lack of the space.

Decision algorithms are based on sequent calculus for BKD45DKDIKD logic. We
will use not all inference rules, because some of them are redundant then working
with subclass of BKD45DKDIKD logic (see [2] for all inference rules including ones
for temporal operators). Sequent calculus deals with sequents which has multi-sets on
both sides of →. During decision algorithms we will use inference rules ¬L, ∨L, ¬R,
∨R, Weak (see [2]) and (BEL − KD45):

�,BEL(�) → �,BEL(�),BEL(�)

BEL(�) → BEL(�),BEL(�)

Here, � must be at most one formula, φ and ψ – formulas, �,� – finite (may be
empty) sets of formulas.

2. Decision algorithms

Now we introduce several definitions used in original and modified algorithms.



322 A. Birštunas

DEFINITION 1. Tree node with 2 sequents S, S′ we will call circle-type node if
none of the rules except BEL or Weak can be applied to second sequent S′. Tree node
with one sequent Ŝ′ and one formula � we will call box-type node if all formulas in
sequent Ŝ′ has top-level operator BEL and � is one of Ŝ′ formulas.

DEFINITION 2. If circle-type node N with second sequent S has ancestor circle-
type node N∗ with second sequent S∗ and sequents S and S∗ are the same, then we
will say, that we have circle-type loop N∗ ⇒ N . If box-type node N̂ with sequent Ŝ

has ancestor box-type node N̂∗ with sequent Ŝ∗ and sequents Ŝ and Ŝ∗ are the same,
then we will say, that we have box-type loop N̂∗ ⇒ N̂ .

Now we introduce procedures based on inference rules used during algorithms.
Procedure A. Apply ¬R, ¬L, ∨R, ∨L to first sequent of the circle-type node S as

far as possible. Delete all sequents which are sequent calculus axioms. End.
All sequents S′

1,S
′
2, . . . obtained by Procedure A satisfies such conditions:

• S′
i consist only of formulas with top-level operator BEL or are atomic proposi-

tions and all formulas are sub-formulas of formulas in sequent S.
• Sequent S is invalid iff at least one of S′

1,S
′
2, . . . is invalid. (1)

Procedure B. Apply Procedure B1 for sequent S′. For every pair < Ŝ′
i
,�i > got

during Proc. B1 apply Proc. B2 (B1, B2 definitions are placed below). End.
All sequents S′′

1 ,S′′
2 , . . . obtained by Procedure B satisfies:

• Sequent S′ is invalid iff all of S′′
1 ,S′′

2 , . . . are invalid. (2)
Procedure B1. Let S′ be sequent obtained by Proc. A. Delete all formulas in S′

leaving only those top-level operator is BEL. Choose one of the formulas from the
right side of → and mark chosen formula as �. Result of this procedure are all differ-
ent pairs < Ŝ′

i ,�i >(empty marked formula is included). End.
Procedure B2. Let < Ŝ′

i ,�i > be a pair obtained by Proc. B1. For Ŝ′ apply rule
BEL − KD45 with �′

i as the main formula of the rule and get new sequent S′′. This
procedure generates one sequent for every pair < Ŝ′

i ,�
′
i >. End.

Original algorithm (here named Algorithm 1) uses A and B, but newly introduced
decision algorithm uses B1 and B2 instead of B. In this work we introduce informal
Algorithm 1 (fully described in [2]), because of the lack of the space.

Algorithm 1. For every second sequent S′ of the circle-type node N ′ apply Proc. B
and get S′′

1 ,S′′
2 , . . .. For every S′′

i
apply Proc. A and get sequents S′′′

i,1,S
′′′
i,2, . . .. For

every S′′′
i,j

create circle-type node N ′′′
i,j

with sequents S′′
i

, S′′′
i,j

. Join node N ′ with all
nodes N ′′′

i,j . If some node ends circle-type loop mark it with letter ’c’. Repeat these
actions for newly got not marked nodes as far as possible.

You will get a tree of circle-type nodes with the root node containing initial sequent
S. All marked leaf-node’s second sequents are invalid, not marked – valid. Delete valid
branches from tree by going down from leaves to root and applying conditions (1), (2).
Initial sequent S is valid iff all nodes are deleted. End.

Proof of decision algorithm completeness is placed in [2].
We introduce modified algorithm (here named Algorithm 2) which uses efficient

loop-check. Main idea of algorithm is to check box-type loops instead of circle-type.



Efficient decision procedure for Belief modality 323

For this reason we insert new box-type nodes between every pair of joined circle-type
nodes without adding additional circle-type nodes. So, Algorithm 2 constructs tree
consisted of circle and box type nodes.

Algorithm 2.
1. Apply Proc. A for initial sequent S0, get sequents S′

1,S
′
2, . . .. For S′

i create new
circle-type node N ′

i with sequents S0, S′
i .

2. For every circle-type node of N ′
1,N

′
2, . . . apply the following (we will write N ′

for taken circle-type node, and S′ for the second sequent of this node):
2.1. Apply Proc. B1 for S′ and get pairs < Ŝ′

1,�1 >,< Ŝ′
2,�2 >, . . .. For every

pair < Ŝ′
i ,�i > create new box-type node N̂ ′

i with sequent Ŝ′
i and marked

formula �i . Join node N ′ with nodes N̂ ′
1, N̂

′
2, . . ..

2.2. For every pair < Ŝ′
i ,�i > (box-type node N̂ ′

i ) apply the following:

2.2.1. If exist box-type loop N̂∗ ⇒ N̂ ′
i mark node N̂ ′

i with letter ’c’.
2.2.2. If not, apply Proc. B2 for pair < Ŝ′

i
,�i > and get sequent S′′

i
. Then

apply Proc. A for sequent S′′
i

and get S′′′
i,1,S

′′′
i,2, . . .. For every sequent

S′′′
i,j

create new circle-type nodes N ′′′
i,j

with sequents S′′
i

, S′′′
i,j

. Join node

N̂ ′
i with nodes N ′′′

i,j . For every created node N ′′′
i,j recursively apply Step

2.
3. Delete valid branches from constructed tree. Delete all circle-type leaf-nodes

from the tree. Let that circle-type node N has box-type children N̂ ′
1, N̂

′
2, . . .. If

at least one of N̂ ′
i is a leaf-node and is not marked with ’c’, delete all nodes

N̂ ′
i (with all nodes above them). Repeat this step until all tree leaf-nodes will be

marked with ’c’ or no node will be left.
4. Sequent S0 is valid iff all nodes are deleted during Step 3.
End.

3. Efficiency of used loop-check

At this point nothing better can be found in Algorithm 2 then in Algorithm 1. To show
improvement of performance we have to prove some lemmas. First we will show that
algorithms are equivalence. After we will show, that loop-check used in Algorithm 2
is more efficient then loop-check used in Algorithm 1.

LEMMA 1. If N ⇒ N ′ is a loop (circle or box type) in a tree then all sequents
inside a loop nodes has the same formulas with top-level operator BEL.

Proof. Loop begins and ends with the same sequent and during Algorithm 2 steps
we do not delete any formula with top-level operator BEL.

If we eliminate all box-type nodes we will get some subtree of the tree constructed
according to Algorithm 1 (tree construction in Algorithm 2 and Proc. B definition
based on B1, B2). Let we have a tree constructed during Algorithm 1 before deletion
(Step 3). Insert corresponding box-type node between every joined circle-type nodes



324 A. Birštunas

to get tree constructed according Algorithm 2 (but without box-type loop-check at all).
Lemmas (their proofs) bellow will deal with such a tree.

LEMMA 2. If sequent is invalid according to Algorithm 1 then it will be invalid
according to Algorithm 2 too.

Proof. If N ⇒ N ′ is circle-type loop in a tree and box-type nodes N̂, N̂ ′ are chil-
dren of N and N ′, then there exists box-type loop N̂ ⇒ N̂ ′ (box-type node’s sequent
can have only formulas with top-level operator BEL and Lemma 1). Every tree branch
contains circle-type loop for Algorithm 1 if sequent is invalid, then every such tree
branch will contain box-type loop too, and we get a proof.

During Step 3 of Algorithm 1 we can delete box-type node N̂ ′ in two cases: a) if all
children of node N̂ ′ are deleted, b) if N̂ ′ has father N ′ which is deleted because some
other child of N ′ was deleted or it is true for other ancestor of N̂ ′.

It is important to mention that in case b) sub-tree above N̂ ′ do not impact N̂ ′ deletion
at all. The next lemma says that we can use only case b) for deletion box-type node
which ends some box-type loop.

LEMMA 3. Let we have box-type loop N̂ ⇒ N̂ ′ in constructed tree and node N̂ ′
was deleted during Step 3. Then there exist another (different from N̂ ′) child of N̂ ′
father which was deleted or it is true for some other ancestor of N̂ ′.

Proof. Where can be two cases of box-type loop N̂ ⇒ N̂ ′ – then nodes N̂ and N̂ ′
has the same marked � formula (I) and then has different one (II).

I) Box-type nodes N̂, N̂ ′ has identical children. We will check too sub-cases: all
children of N̂ ′ are leaves, and then some of them are not.

If all N̂ ′ children are leaves, then at least one are marked with ’c’ (otherwise we
cannot get box-type loop, because all children of N̂ will be leaves). If there exist N̂ ′
child marked with letter ’c’, then N̂ ′ can not be deleted according to a).

If there exist N̂ ′ child which is not leaf, then let that loop N̂ ⇒ N̂ ′ goes through N̂

child N1 and it’s child N̂1,1: N̂ → N1 → N̂1,1 ⇒ N̂ ′. Let circle-type node N ′
1 be a child

of N̂ ′ and equal to N1 (such child exist because children of N̂, N̂ ′ are identical). N ′
1

cannot be a leaf (otherwise we cannot have a loop). Box-type node N̂ ′ can be deleted
according to a) only if all its children are deleted, including N ′

1. Let that N̂ ′
1,1, N̂

′
1,2, . . .

are children of N ′
1. N ′

1 can be deleted if at least one of N̂ ′
1,1, N̂

′
1,2, . . . was deleted. Let

deleted child to be N̂ ′
1,i . If N̂ ′

1,i equals to N̂1,1, then we have box-type loop N̂ ⇒ N̂ ′
1,i

and can apply the same arguments for N̂ ′
1,i as to N̂ ′, till reach the leaves of the tree.

If N̂ ′
1,i

is different from N̂1,1, then circle-type node N1 has child (different from N̂1,1)
which is equal to N̂ ′

1,i
. So, N̂1,1 can be deleted according to b) and some ancestor of

node N̂ ′ can be deleted according to b).
II) In this case father of N̂ has another child N̂∗ (different from N̂) which is the

same as N̂ ′. So, if during Step 3 node N̂ ′ is deleted, then it can be deleted because N̂

was deleted according to b).



Efficient decision procedure for Belief modality 325

LEMMA 4. If sequent is valid according to Algorithm 1 then it will be valid ac-
cording to Algorithm 2 too.

Proof. If we check box-type loops, every box-type loop ending node wont be
deleted according to a) (Algorithm 2 definition), but can be deleted according to b)
(Lemma 3). If sequent is valid, then all nodes will be deleted from the tree including
box-type loop-check, therefore sequent is valid according to Algorithm 2.

DEFINITION 3. If box-type loop N̂ ⇒ N̂ ′ consist of n + 1 box-types nodes, then
we will say, that box-type loop N̂ ⇒ N̂ ′ has length n.

LEMMA 5. Every box-type loop N̂ ⇒ N̂ ′ has length 1.

Proof. All box-type nodes has only sequents those all formulas has BEL as their
top level operator. According to Lemma 1 all sequents inside a loop has the same
formulas with top-level operator BEL. So, all box-type nodes inside loop N̂ ⇒ N̂ ′
has identical sequents and therefore loop has length 1.

We have to notice that such fact is wrong for circle-type loops.
Lemma 5 says that box-type loop-check is more efficient then previously used

circle-type loop-check, because for loop detection we can check only the last box-type
node, not all nodes placed below.

References

1. M. Wooldridge, Reasoning about Rational Agents, The MIT Press (2000).
2. N. Nide, S. Takata, Deducton systems for BDI logic using sequent calculus, Proc. of AAMAS’02,

928–935 (2002).
3. M. Mouri, Constracting counter-models for modal logic K4 from refutation trees, Bulletin of the Sec-

tion of Logic, 31 (2), 81–90 (2002).
4. A. Heuerding, M. Seyfried, H. Zimmermann, Efficient loop-check for backward proof search in some

non-classical propositional logics, in: P. Miglioli, U. Moscato, D. Mundici, M. Ornaghi (Eds.), LNCS,
1071, 210–225 (1996).

REZIUMĖ

A. Birštunas. Efektyvi sprendimo procedūra modaliniam operatoriui Belief

Pateiktas sprendimo radimo algoritmas BDI logikos formuli ↪u klasei, kuris naudoja efektyv ↪u cikl ↪u radimo
mechanizm ↪a modaliniam operatoriui Belief.


