Efficient decision procedure for Belief modality

Adomas BIRŠTUNAS (VU)

e-mail: adomo@takas.lt

Abstract. This paper defines decision algorithm for subclass of $B^{KD45}D^{KD}I^{KD}$ logic which is based on known algorithm for temporal $B^{KD45}D^{KD}I^{KD}$ logic ([2]). BDI logics are widely used in agent based systems. Such usage of BDI logic can be found in [1]. The original decision algorithm uses loop-check technique for *BEL* and temporal operators. Applied loop-check technique is not optimized and therefore loop-check takes most of the time used in decision algorithm. Some examples of efficient loop-check applications for logic KT, S4 and some subclasses of intuitionistic logic can be found in [4]. Another efficient loop-check can be found in work [3]. We concentrate on our attitude on loop-check optimization for *BEL* operator. This paper defines decision algorithm modification, which uses efficient loop-check for *BEL* operator, but do not effect performance of other parts of algorithm. We define optimization only for *BEL* operator and therefore we omit temporal operators in this paper.

Keywords: BDI logic, loop-check, sequent calculus..

1. Definition of researched subclass

Researched subclass of $B^{KD45}D^{KD}I^{KD}$ logic are described as follows:

Let *P* be a set of all propositional symbols. If *p* is a primitive preposition $(p \in P)$, then *p* is formula, if ϕ , ψ are formulas, then $\neg \phi$, $\phi \lor \psi$, $BEL(\phi)$ are also formulas. Formulas $\phi \land \psi$, $\phi \supset \psi$, $\phi \Leftrightarrow \psi$ are abbreviations of $\neg(\neg \phi \lor \neg \psi)$, $\neg \phi \lor \psi$, $(\phi \supset \psi) \land (\psi \supset \phi)$ respectively.

We use common Kripke 'possible worlds' semantics. In other words, we will operate with all BDI logic formulas those do not contain *INTEND* or *DESIRE* modalities. *INTEND*, *DESIRE* are omitted because of the lack of the space.

Decision algorithms are based on sequent calculus for $B^{KD45}D^{KD}I^{KD}$ logic. We will use not all inference rules, because some of them are redundant then working with subclass of $B^{KD45}D^{KD}I^{KD}$ logic (see [2] for all inference rules including ones for temporal operators). Sequent calculus deals with sequents which has multi-sets on both sides of \rightarrow . During decision algorithms we will use inference rules $\neg L$, $\lor L$, $\neg R$, $\lor R$, Weak (see [2]) and (BEL - KD45):

$$\frac{\Gamma, BEL(\Gamma) \to \Theta, BEL(\Theta), BEL(\Delta)}{BEL(\Gamma) \to BEL(\Theta), BEL(\Delta)}$$

Here, Θ must be at most one formula, ϕ and ψ – formulas, Γ , Δ – finite (may be empty) sets of formulas.

2. Decision algorithms

Now we introduce several definitions used in original and modified algorithms.

DEFINITION 1. Tree node with 2 sequents S, S' we will call circle-type node if none of the rules except *BEL* or *Weak* can be applied to second sequent S'. Tree node with one sequent \hat{S}' and one formula Θ we will call box-type node if all formulas in sequent \hat{S}' has top-level operator *BEL* and Θ is one of \hat{S}' formulas.

DEFINITION 2. If circle-type node N with second sequent S has ancestor circletype node N^* with second sequent S^* and sequents S and S^* are the same, then we will say, that we have circle-type loop $N^* \Rightarrow N$. If box-type node \widehat{N} with sequent \widehat{S} has ancestor box-type node \widehat{N}^* with sequent \widehat{S}^* and sequents \widehat{S} and \widehat{S}^* are the same, then we will say, that we have box-type loop $\widehat{N}^* \Rightarrow \widehat{N}$.

Now we introduce procedures based on inference rules used during algorithms.

Procedure A. Apply $\neg R$, $\neg L$, $\lor R$, $\lor L$ to first sequent of the circle-type node *S* as far as possible. Delete all sequents which are sequent calculus axioms. **End.**

All sequents S'_1, S'_2, \ldots obtained by Procedure A satisfies such conditions:

- S'_i consist only of formulas with top-level operator *BEL* or are atomic propositions and all formulas are sub-formulas of formulas in sequent *S*.
- Sequent *S* is invalid iff at least one of S'_1, S'_2, \ldots is invalid. (1)

Procedure B. Apply Procedure B1 for sequent S'. For every pair $\langle \hat{S}'_i, \Theta_i \rangle$ got during Proc. B1 apply Proc. B2 (B1, B2 definitions are placed below). End.

All sequents S_1'', S_2'', \ldots obtained by Procedure B satisfies:

• Sequent S' is invalid iff all of S_1'', S_2'', \ldots are invalid.

Procedure B1. Let S' be sequent obtained by Proc. A. Delete all formulas in S' leaving only those top-level operator is *BEL*. Choose one of the formulas from the right side of \rightarrow and mark chosen formula as Θ . Result of this procedure are all different pairs $\langle \hat{S}'_i, \Theta_i \rangle$ (empty marked formula is included). **End.**

(2)

Procedure B2. Let $\langle \hat{S}'_i, \Theta_i \rangle$ be a pair obtained by Proc. B1. For \hat{S}' apply rule BEL - KD45 with Θ'_i as the main formula of the rule and get new sequent S''. This procedure generates one sequent for every pair $\langle \hat{S}'_i, \Theta'_i \rangle$. End.

Original algorithm (here named Algorithm 1) uses A and B, but newly introduced decision algorithm uses B1 and B2 instead of B. In this work we introduce informal Algorithm 1 (fully described in [2]), because of the lack of the space.

Algorithm 1. For every second sequent S' of the circle-type node N' apply Proc. B and get S''_1, S''_2, \ldots For every S''_i apply Proc. A and get sequents $S'''_{i,1}, S'''_{i,2}, \ldots$ For every $S'''_{i,j}$ create circle-type node $N'''_{i,j}$ with sequents $S''_i, S'''_{i,j}$. Join node N' with all nodes $N'''_{i,j}$. If some node ends circle-type loop mark it with letter 'c'. Repeat these actions for newly got not marked nodes as far as possible.

You will get a tree of circle-type nodes with the root node containing initial sequent S. All marked leaf-node's second sequents are invalid, not marked – valid. Delete valid branches from tree by going down from leaves to root and applying conditions (1), (2). Initial sequent S is valid iff all nodes are deleted. **End.**

Proof of decision algorithm completeness is placed in [2].

We introduce modified algorithm (here named Algorithm 2) which uses efficient loop-check. Main idea of algorithm is to check box-type loops instead of circle-type.

For this reason we insert new box-type nodes between every pair of joined circle-type nodes without adding additional circle-type nodes. So, Algorithm 2 constructs tree consisted of circle and box type nodes.

Algorithm 2.

- 1. Apply Proc. A for initial sequent S_0 , get sequents S'_1, S'_2, \ldots For S'_i create new circle-type node N'_i with sequents S_0, S'_i .
- 2. For every circle-type node of N'_1, N'_2, \ldots apply the following (we will write N' for taken circle-type node, and S' for the second sequent of this node):
 - 2.1. Apply Proc. B1 for S' and get pairs $\langle \widehat{S}'_1, \Theta_1 \rangle, \langle \widehat{S}'_2, \Theta_2 \rangle, \dots$ For every pair $\langle \widehat{S}'_i, \Theta_i \rangle$ create new box-type node \widehat{N}'_i with sequent \widehat{S}'_i and marked formula Θ_i . Join node N' with nodes $\widehat{N}'_1, \widehat{N}'_2, \dots$
 - 2.2. For every pair $\langle \widehat{S}'_i, \Theta_i \rangle$ (box-type node \widehat{N}'_i) apply the following:
 - 2.2.1. If exist box-type loop $\widehat{N}^* \Rightarrow \widehat{N}'_i$ mark node \widehat{N}'_i with letter 'c'.
 - 2.2.2. If not, apply Proc. B2 for pair $\langle \hat{S}'_i, \Theta_i \rangle$ and get sequent S''_i . Then apply Proc. A for sequent S''_i and get $S''_{i,1}, S'''_{i,2}, \ldots$ For every sequent $S'''_{i,j}$ create new circle-type nodes $N''_{i,j}$ with sequents $S''_i, S'''_{i,j}$. Join node \widehat{N}'_i with nodes $N''_{i,j}$. For every created node $N''_{i,j}$ recursively apply Step 2.
- 3. Delete valid branches from constructed tree. Delete all circle-type leaf-nodes from the tree. Let that circle-type node N has box-type children $\widehat{N}'_1, \widehat{N}'_2, \ldots$ If at least one of \widehat{N}'_i is a leaf-node and is not marked with 'c', delete all nodes \widehat{N}'_i (with all nodes above them). Repeat this step until all tree leaf-nodes will be marked with 'c' or no node will be left.
- 4. Sequent S_0 is valid iff all nodes are deleted during Step 3.
- End.

3. Efficiency of used loop-check

At this point nothing better can be found in Algorithm 2 then in Algorithm 1. To show improvement of performance we have to prove some lemmas. First we will show that algorithms are equivalence. After we will show, that loop-check used in Algorithm 2 is more efficient then loop-check used in Algorithm 1.

LEMMA 1. If $N \Rightarrow N'$ is a loop (circle or box type) in a tree then all sequents inside a loop nodes has the same formulas with top-level operator BEL.

Proof. Loop begins and ends with the same sequent and during Algorithm 2 steps we do not delete any formula with top-level operator *BEL*.

If we eliminate all box-type nodes we will get some subtree of the tree constructed according to Algorithm 1 (tree construction in Algorithm 2 and Proc. B definition based on B1, B2). Let we have a tree constructed during Algorithm 1 before deletion (Step 3). Insert corresponding box-type node between every joined circle-type nodes

to get tree constructed according Algorithm 2 (but without box-type loop-check at all). Lemmas (their proofs) bellow will deal with such a tree.

LEMMA 2. If sequent is invalid according to Algorithm 1 then it will be invalid according to Algorithm 2 too.

Proof. If $N \Rightarrow N'$ is circle-type loop in a tree and box-type nodes \widehat{N} , \widehat{N}' are children of N and N', then there exists box-type loop $\widehat{N} \Rightarrow \widehat{N}'$ (box-type node's sequent can have only formulas with top-level operator *BEL* and Lemma 1). Every tree branch contains circle-type loop for Algorithm 1 if sequent is invalid, then every such tree branch will contain box-type loop too, and we get a proof.

During Step 3 of Algorithm 1 we can delete box-type node \widehat{N}' in two cases: a) if all children of node \widehat{N}' are deleted, b) if \widehat{N}' has father N' which is deleted because some other child of N' was deleted or it is true for other ancestor of \widehat{N}' .

It is important to mention that in case b) sub-tree above \widehat{N}' do not impact \widehat{N}' deletion at all. The next lemma says that we can use only case b) for deletion box-type node which ends some box-type loop.

LEMMA 3. Let we have box-type loop $\widehat{N} \Rightarrow \widehat{N}'$ in constructed tree and node \widehat{N}' was deleted during Step 3. Then there exist another (different from \widehat{N}') child of \widehat{N}' father which was deleted or it is true for some other ancestor of \widehat{N}' .

Proof. Where can be two cases of box-type loop $\widehat{N} \Rightarrow \widehat{N}'$ – then nodes \widehat{N} and \widehat{N}' has the same marked Θ formula (I) and then has different one (II).

I) Box-type nodes \widehat{N} , \widehat{N}' has identical children. We will check too sub-cases: all children of \widehat{N}' are leaves, and then some of them are not.

If all \widehat{N}' children are leaves, then at least one are marked with 'c' (otherwise we cannot get box-type loop, because all children of \widehat{N} will be leaves). If there exist \widehat{N}' child marked with letter 'c', then \widehat{N}' can not be deleted according to a).

If there exist \widehat{N}' child which is not leaf, then let that loop $\widehat{N} \Rightarrow \widehat{N}'$ goes through \widehat{N} child N_1 and it's child $\widehat{N}_{1,1}$: $\widehat{N} \to N_1 \to \widehat{N}_{1,1} \Rightarrow \widehat{N}'$. Let circle-type node N'_1 be a child of \widehat{N}' and equal to N_1 (such child exist because children of \widehat{N} , \widehat{N}' are identical). N'_1 cannot be a leaf (otherwise we cannot have a loop). Box-type node \widehat{N}' can be deleted according to a) only if all its children are deleted, including N'_1 . Let that $\widehat{N}'_{1,1}$, $\widehat{N}'_{1,2}$, ... are children of N'_1 . N'_1 can be deleted if at least one of $\widehat{N}'_{1,1}$, $\widehat{N}'_{1,2}$, ... was deleted. Let deleted child to be $\widehat{N}'_{1,i}$. If $\widehat{N}'_{1,i}$ equals to $\widehat{N}_{1,1}$, then we have box-type loop $\widehat{N} \Rightarrow \widehat{N}'_{1,i}$ and can apply the same arguments for $\widehat{N}'_{1,i}$ as to \widehat{N}' , till reach the leaves of the tree. If $\widehat{N}'_{1,i}$ is different from $\widehat{N}_{1,1}$, then circle-type node N_1 has child (different from $\widehat{N}_{1,1}$) which is equal to $\widehat{N}'_{1,i}$. So, $\widehat{N}_{1,1}$ can be deleted according to b) and some ancestor of node \widehat{N}' can be deleted according to b).

II) In this case father of \widehat{N} has another child \widehat{N}^* (different from \widehat{N}) which is the same as \widehat{N}' . So, if during Step 3 node \widehat{N}' is deleted, then it can be deleted because \widehat{N} was deleted according to b).

LEMMA 4. If sequent is valid according to Algorithm 1 then it will be valid according to Algorithm 2 too.

Proof. If we check box-type loops, every box-type loop ending node wont be deleted according to a) (Algorithm 2 definition), but can be deleted according to b) (Lemma 3). If sequent is valid, then all nodes will be deleted from the tree including box-type loop-check, therefore sequent is valid according to Algorithm 2.

DEFINITION 3. If box-type loop $\widehat{N} \Rightarrow \widehat{N}'$ consist of n + 1 box-types nodes, then we will say, that box-type loop $\widehat{N} \Rightarrow \widehat{N}'$ has length n.

LEMMA 5. Every box-type loop $\widehat{N} \Rightarrow \widehat{N}'$ has length 1.

Proof. All box-type nodes has only sequents those all formulas has *BEL* as their top level operator. According to Lemma 1 all sequents inside a loop has the same formulas with top-level operator *BEL*. So, all box-type nodes inside loop $\widehat{N} \Rightarrow \widehat{N}'$ has identical sequents and therefore loop has length 1.

We have to notice that such fact is wrong for circle-type loops.

Lemma 5 says that box-type loop-check is more efficient then previously used circle-type loop-check, because for loop detection we can check only the last box-type node, not all nodes placed below.

References

- 1. M. Wooldridge, Reasoning about Rational Agents, The MIT Press (2000).
- 2. N. Nide, S. Takata, Deducton systems for BDI logic using sequent calculus, *Proc. of AAMAS'02*, 928–935 (2002).
- 3. M. Mouri, Constracting counter-models for modal logic K4 from refutation trees, *Bulletin of the Section of Logic*, **31** (2), 81–90 (2002).
- A. Heuerding, M. Seyfried, H. Zimmermann, Efficient loop-check for backward proof search in some non-classical propositional logics, in: P. Miglioli, U. Moscato, D. Mundici, M. Ornaghi (Eds.), *LNCS*, 1071, 210–225 (1996).

REZIUMĖ

A. Birštunas. Efektyvi sprendimo procedūra modaliniam operatoriui Belief

Pateiktas sprendimo radimo algoritmas BDI logikos formulių klasei, kuris naudoja efektyvų ciklų radimo mechanizmą modaliniam operatoriui Belief.