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Discriminant analysis of Gaussian spatial data
with exponential covariance structure
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Abstract. This paper considers the discrimination of the observation of the stationary Gaussian random
field belonging to one of two populations with different means and covariance functions. Assumming that
covariance functions has exponential structure, the unknown means and covariance parameters are esti-
mated by ML method. Approximation of the expected error rate associatedwith Bayes plug-in discriminant
function is derived.
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1. Introduction

Realizations of a random field {Z(s): s ∈ D ⊂ Rd} can be considered as spatial data,
where s defines spatial coordinates.

Suppose that the model of Z(s) in population �l is

Z(s) = β ′
l x(s) + εl(s),

where x(s) = (x1(s), . . . , xq(s))′ is a q × 1 vector of nonrandom regressors and βl

is the vector of unknown parameters, l = 1,2. Assume that {εl(s): s ∈ D ⊂ Rd} is a
scalar zero-mean stationary spatial Gaussian random field with factorized stationary
spatial covariance function

cov
{
εl(s), εl(u)

} = cl (s − u)σ 2,

where cl(s − u) is the positive definite spatial correlation function, l = 1,2. Then, in
�l the mean function at location s is

µl(s) = β ′
l x(s), l = 1,2.

Consider the problem of classification of the observation Z0 = Z(s0), with s0 ∈ D

into one of two populations specified above. Under the assumption that the popula-
tions are completely specified and for known prior probabilities of populations π1 and
π2(π1 +π2 = 1), the Bayes classification rule (BCR) dB(·) minimizing the probability
of misclassification (PMC) is

dB(z0) = arg max
{l=1,2}

πlpl(z
0), (1)
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where z0 is the realization of Z0 and

pl(z
0) = exp

(
− 1

2
(z0 − µ0

l )
′(z0 − µ0

l )/σ
2
)
/
√

2πσ 2

is a probability density function (p.d.f.) of Z0 in �l , l = 1,2. Here µ0
l = β ′

lx
0 with

x0 = x(s0), l = 1,2.
Denote by PB the PMC of BCR, usually called Bayes error rate.
In practical applications the parameters of the p.d.f. are usually not known. Then the

estimators of unknown parameters can be found from training samples T1 and T2 taken
separately from �1 and �2, respectively. When estimators of unknown parameters are
used, the plug-in version of BCR is obtained.

Suppose that we observe the training sample T ′ = (T ′
1,T

′
2), where Tl is the Nl × 1

vector of Nl observations of univariate Z(s) from �l , l = 1,2. Then T is the N × 1
vector, where N = N1 + N2.

Assume that Z0 is independent on T and T1 is independent on T2.
Let β̂1, β̂2 and σ̂ 2 be the estimators of β1, β2 and σ 2, respectively, based on T , and

let µ̂l(s) = β̂ ′
l x(s), l = 1,2. Put � = (µ0

1,µ
0
2,σ

2) and �̂ = (µ̂0
1, µ̂

0
2, σ̂

2).
The plug-in rule dB(z0; �̂) is obtained by replacing the parameters in (1) with their

estimators. Then the corresponding sample LDF is defined as

W(z0; �̂) =
(
z0 − 1

2
(µ̂0

1 + µ̂0
2)

)′
(µ̂0

1 − µ̂0
2)/σ̂

2 + γ,

where γ = ln π1
π2

.

DEFINITION 1. The actual error rate for dB(z0; �̂) is defined as

P (�̂) =
2∑

l=1

πl

∫ (
1 − δ

(
l, dB(z0; �̂)

)
pl(z

0;�)
)
dz0,

where δ(·, ·) is Kronecker delta.

In the considered case the actual error rate for dB(z0; �̂) can be rewritten as

P (�̂) =
2∑

l=1

π0
l 


(
(−1)l

(µ0
l − 1

2 (µ̂0
1 + µ̂0

2))
′(µ̂0

1 − µ̂0
2) + γ/σ̂ 2

σ

√
(µ̂0

1 − µ̂0
2)

′(µ̂0
1 − µ̂0

2)

)
. (2)

DEFINITION 2. The expectation of the actual error rate with respect to the distri-
bution of T denoted as ET {P (�̂)} is called the expected error rate (EER) for the rule
dB(z0, �̂).

Asymptotic approximations and asymptotic expansions for EER in the case of in-
dependent observations were considered by many authors (see, e.g., Dučinskas [1]).
Mardia [2] considered a similar problem of classifying spatially distributed Gaussian
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observations with constant means. But he did not analyze the EER. In the present pa-
per the asymptotic approximation for the EER of the classifying spatially distributed
Gaussian observation with different means depending on regressors and parametric
covariance function having exponential structure with common variance is derived.
Maximum likelihood estimators (MLE) of all parameters were used in the plug-in ver-
sion of the Bayes classification rule.

2. Asymptotic approximation for EER

Denote by Cl the Nl × Nl spatial correlation matrix of training sample Tl for l = 1,2
and by Xl the Nl × q matrix of regressors or design matrix.

Set C = C1 ⊕ C2, where ⊕ denotes direct sum of matrices.
Assume that the mathematical model of T is

T = Xβ + E, (3)

where X = X1 ⊕ X2, β = β1 ⊕ β2 and E ∼ NN(0,σ 2C).
Suggest that cl(h) belongs to the parametric exponential family defined by cl (h) =

exp(−|h|/θl ), l = 1,2.

The situation when true parameters {θl} are known was considered by J. Šaltytė and
K. Dučinskas [4].

In this paper vector of parameters δ = (σ 2,β1,β2, θ1, θ2) are assumed unknown.
Maximum likelihood method studied by Mardia and Marshal [3] was used for para-
meter estimations.

Let δ̂ be the ML estimator of δ by training sample T .

LEMMA. Suppose that regularity assumptions of Mardia, Marshall [3] for model
(3) and sampling design for T hold. Then as N → ∞

J (δ̂ − δ)
D−→ N2q+3(0, I),

where

J = Jβ ⊕ JV .

Proof. Lemma directly follows from the Theorem 1 [3] applied for model (3).
Partial derivatives of matrix Cl by θl was defined by Dl .
Let

Jβ = X′C−1X/σ 2, JV = 1
2
(tij ), i, j = 1,2,3,

where JV is symmetric 3 × 3 matrix with elements

t11 = n/σ 4, t23 = 0,

t1i = tr(C−1
i−1Di−1)/(σ

2θ2
i−1), tii = tr(C−1

i−1Di−1)
2/θ4

i , i = 2,3.
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THEOREM. Under assumptions of Lemma the asymptotic approximation of the
EER is

E
(
P (�̂)

) � PB + π1ϕ
(

− 

2
− γ



)( 2∑
l=1

al + γ 2b

)
/2,

where

al = σ 2x ′(s0)(X
′
lC

−1
l Xl)

−1x(s0)

(
− 

2
+ (−2)l

γ



)2
,

b = 2σ 4
(

N −
2∑

l=1

(
tr(C−1

l Dl)
)2

/tr(C−1
l Dl)

2
)
.

Proof. Lemma imlies that covariance of δ̂ is asymptotically equivalent to J−1, as
N → ∞ i.e.

cov(δ̂ − δ) � J−1. (4)

Taylor series expansion of P (�̂) given by formula (2) up to the second order deriva-
tives about true values of parameters are used. Taking the expectation of it by sampling
distribution and using (4) the proof is completed.

The accuracy of the proposed approximation depends on the expectation of the
remainder term of the Taylor Series expansion of (P (�̂)). Under given assumptions,
it is of order o((X′C−1X)−1).
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REZIUMĖ

K. Dučinskas. Diskriminantinė erdvini ↪u Gauso duomen ↪u su eksponentine kovariacija analizė

Straipsnyje nagrinėjamas Gauso lauko realizacij ↪u klasifikavimo uždavinys, kai klasės skiriasi regresiniais

vidurkiais ir kovariacinėmis funkcijomis. Kovariacinės funkcijos turi parametrin ↪e eksponentin ↪e struktūr ↪a.

Pateikta laukiamos klaidos tikimybės aproksimacija atvejui, kai visi nežinomi klasi ↪u parametrai vertinami

maksimalaus tikėtinumo metodu.


