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Modified STARIMA model for space-time data *

Laura ŠALTYTĖ (KU)
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Abstract. In this paper we propose spatial time series model. ARIMA model class is considered for each
location. Model for each location is built by spatial “connection” of identified ARIMA models in observed
locations. Spatial “connection” is implemented by spatial averaging of the coefficients of ARIMA models
and by ordinary kriging procedure for means. Comparison between proposed model which can be con-
sidered as modified STARIMA model and general STARIMA model developed by Pfeifer and Deutch is
presented. Mean square prediction error (MSPE) for proposed procedure of prediction is presented. Values
of MSPE for real data are calculated.
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1. Introduction

Spatial-time series called STARIMA model class developed at early eighties by Pfeifer
and Deutch (1980). But these are still not implemented in the widely applicable com-
puter program systems such as SPSS, STATISTICA, S-PLUS and R. We have devel-
oped spatial-time series modeling technique (see L. Šaltyte, K. Dučinskas [9]) which
could be easily implemented by software with ARIMA, ordinary kriging and semivari-
ogram fitting procedures (i.e., GEOSTAT, R, S-PLUS). The proposed technique based
on spatial “connection” of ARIMA fitted to observed data.

2. STARIMA model

STARIMA model class, developed by Pfeifer and Deutch, is characterized by linear
dependence lagged in both space and time [6]. Weight matrix W(l) is a square N × N

lth order weight matrix with elements w
(l)
ij that are nonzero only if the measurement

locations i and j are lth order neighbors. Autoregressive and moving average parame-
ters are estimated by space-time autocovariance function.

Seasonal multiplicative STARIMA (pλ,d,qm) × (P�,D,QM)S model:

�P,�(BS)φp,λ(B) �D
S �dZt = �Q,M(BS)θq,m(B)εt , (1)

where φp,λ = 1 − ∑p
k=1

∑λk

l=0 φklW
(l)Bk and θg,m(B) = 1 − ∑q

k=1

∑mk

l=0 θklW
(l)Bk

– autoregressive and moving average parameters. φkl and θkl – autoregressive and
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moving average parameters at temporal lag k and space lag l; p is the autoregres-
sive order; q is the moving average order; λk – spatial order of the kth autoregres-
sive term; mk – spatial order of the kth moving average term; d – number of nonsea-
sonal differences required, such that �d = (1−B)d ; Bεit = εi,t−1; εt – “white noise”;
�P,� = 1 −∑P

k=1
∑�k

l=0 �klW
(l)BkS and �Q,M(BS) = 1 −∑Q

k=1

∑Mk

l=0 �klW
(l)BkS

are seasonal autoregressive and movin g average parameters �D
S = (1 − BS)D – re-

quired seasonal difference; S-seasonal lag. W(l) = (wl
ij ) – spatial weights matrix with∑N

j=1 w
(l)
ij

= 1.
When d = 0 and D = 0 the model collapses to the easier to interpret STARIMA

model:

Zt =
p∑

k=1

λk∑
l=0

φklW
(l)Zt−k −

q∑
k=1

mk∑
l=0

θklW
(l)εt−k

+
P∑

k=1

�k∑
l=0

�klW
(l)Zt−S−k −

Q∑
k=1

Mk∑
l=0

�klW
(l)εt−S−k + εt . (2)

3. Spatial connection method

Let Zt (s) represent an observation of random variable Z at location s and time t , and
Zit = Zt (si), i = 1, . . . ,N ; t = 1, . . . ,T describe whole analyzed data set.

We assume that mathematical model of Zit is

�iP (Bs)φi(B) �D
s �dZit = αi + �iQ(Bs)φi(B)εit (3)

and denote it by ARIMA (p,d,q) × (P,D,Q)s , i.e., multiplicative seasonal autore-
gressive moving average model with nonzero mean. In the above equations and no-
tational expression, the ordinary autoregressive and moving average components are
represented by polynomials φ(B) and θ(B) of orders p and q respectively the sea-
sonal autoregressive and moving average components by �P (Bs) and θQ(Bs) of or-
ders P and Q and ordinary and seasonal difference components by �d = (1 − B)d

and �D
s = (1 − Bs)D , respectively.

Spatial-time model fitting consists of two parts: ARIMA model fitting in each loca-
tion and kriging estimation of mean.

There are several basic steps of fitting ARIMA models to time series data. These
steps involve plotting the data, possibly transforming the data, identifying the depen-
dence orders of the model, parameter estimation, and diagnostics [8].

The final step of model fitting is model choice. The most popular techniques are
AIC, AICc, and SIC also cross validation [8].

Thus in each location we should fit ARIMA model with the same number of para-
meters and nonzero constant.

For kriging estimator and for spatial “connection” we need to fit semivariogram.
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Spatial connection between ith and j th locations is realized by spatial weighted
average method with the spatial weights:

δij = 1/γ (sij )∑N
i=1 1/γ (sij )

, (4)

there γ (sij ) is the semivariogram between ith and j th locations.
Inverse distance is used, while semivariogram is measure of dissimilarity and in-

verse dimension let us consider that stronger dependence is between nearest locations.
Also γ (h) = 0, when h = 0 it means that main diagonal of weight matrix is zero.

Then parameters for new station can be calculated by

φ̂il =
∑
j

δijφjl, l = 1, . . . ,p, i, j = 1, . . . ,N (autoregression parameters), (5)

θ̂ik =
∑
j

δij θjk, k = 1, . . . , q, i, j = 1, . . . ,N (moving average parameters),(6)

�̂iL =
∑
j

δij �̂jL, L = 1, . . . ,P , i, j = 1, . . . ,N, (7)

�̂iK =
∑
j

δij�̂jK, K = 1, . . . ,Q, i, j = 1, . . . ,N, (seasonal parameters). (8)

As we have already fitted semivariogram and nonzero constant for each location, we
can find the kriging estimator µk , and the nonzero constant for model at new location
is α0k = µk(1 − φ01 − . . . − φ0p). Then fitted model for ith location:

Zit = αik +
p∑

l=1

φilZi,t−l + εit +
q∑

k=1

θ0kεi,t−k

+
p∑

l=1

�ilZi,t−S−l + εit +
q∑

k=1

�0kεi,t−S−k. (9)

In vector form:

Zt = αk +
p∑

l=1

AlZt−l + εt +
q∑

k=1

Bkεt−k +
P∑

L=1

ClZt−S−L +
Q∑

K=1

DKεt−S−K, (10)

where Zt – vector of observations; εt – vector of residuals; φl , �l and θk , �k respec-
tively non seasonal and seasonal parameter matrixes of autoregression and moving
average estimated using spatial weights;

Al = diag(φ1l,φ2l , . . . ,φNl); Bl = diag(θ1k, θ2k, . . . , θNk);
Cl = diag(�1L,�2L, . . . ,�NL); Dl = diag(�1K,�2K, . . . ,�NK).
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Proposed model for each location is built by spatial connection of identified ARIMA
models in observed locations. Spatial “connection” is implemented by spatial averag-
ing of the coefficients of ARIMA models and by ordinary kriging procedure for means.
Spatial weights are estimated using semivariogram. In opposite to STARIMA model,
in model for ith location we are using only lagged in time observations from the same
location, whereas STARIMA model takes observations lagged both in space and time.
Using STARIMA model we should fit 2N cross covariances. Using spatial connection
model there was 2N autocorrelation and partial autocorrelation functions. So spatial
connection model can be considered as modified STARIMA model.

4. Example

Lithuanian Sea Research Center data was used for illustration of proposed modeling
technique. Data set consist of 32 time observation (t = 1, . . . ,32) of the salinity in
Baltic coastal zone in 9 (N = 9) station.

Using plotted data, ACF and PACF we selected several most appropriate models for
all stations.

After diagnostics step model ARIMA (1,0,1) × (1,0,0)4 left. I. e. In each location
we have model:

Zit = αik + φi1Zit−1 + εit + θ0kεi,t−k + �i1Zit−4. (11)

Predictor for this model, taking conditional expectation is:

Et [Zit+j ] = Et [Zit+j /Zit ,Zit−1, . . . , εit , εit−1 . . .]
= αik + φi1Et [Zit+j−1] + �Et [Zit+j−4], j > 4 (12)

Then MSPE can be written:

MSP E = E
(
Zit+j − Et [Zit+j ]

)2

= E
(
Zit+j − αik − φi1[Zit+j−1] − �Et [Zit+j−4]

)2
, (13)

where parameters are fitted using (5)–(8).
To obtain spatial weight, we need semivariogram. Semivariogram is fitted using

the all data. Minimum of Sum square error (SSE) is used for selection criterion. The
Spherical semivariogram is optimal:

γ (|h|) =




0, when |h| = 0,

0.208 + 0.06
(

3
2

|h|
16456.81 − 1

2

( |h|
16456.81

)3
)
, when 0 < |h| < 16456.81,

0.208 + 0.06, when |h| � 16456.81.

Using fitted semivariogam we can estimate spatial parameters for each location and
fit spatial time series model.

For fitted spatial time series models in each location MSPE was calculated. For
calculating cross validation method was used. Results of MSPE in each location are:
0.064312, 0.225515, 0.423063, 0.912638, 0.434277, 0.677374, 0.076821, 0.386017,
0.494622.
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As we can see MSPE are quite small. So we can conclude that proposed modified
model is applicable in some practical situations.
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REZIUMĖ

L. Šaltytė. Modifikuotas STARIMA modelis erdvės-laiko duomenims

Straipsnyje aprašyta nauja erdvini ↪u laiko eiluči ↪u modeliavimo technika, kuriuos esminis principas –

ARIMA modeli ↪u erdvinis sujungimas. Siūlomas modelis gali būti nagrinėjamas kaip modifikuotas

STARIMA modelis. Darbe pateiktos modifikuoto STARIMA modelio vectorinė išraiška ir vidutinė

kvadratinė prognozės paklaida (MSPE). Siūlomas modelis sudarytas Jūrini ↪u tyrim ↪u centro duomenims

apie druskingum ↪a Baltijos jūroje ir jo efektyvumas ↪ivertintas, apskaičiuojant MSPE kryžminio patikrini-
mo metodu.


