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1. Introduction

Special classes of nonlinear systems applied in engineering are nonlinear systems
with both block-oriented Hammerstein and Wiener structures, respectively [1, 3, 4,
7, 8, 14]. There are a lot of papers devoted to the different aspects of the paramet-
ric identification of Hammerstein and Wiener systems and much less on that of the
Hammerstein–Wiener (H-W) systems with so-called hard nonlinearities [2, 6, 12, 13].
On the other hand, the abovementioned systems are common in nonlinear control ap-
plications where hard nonlinearities such as the saturation, preload, dead-zone, etc.,
are present [5]. Especially frequently saturation nonlinearities as an input or an out-
put nonlinearity are observed here, too. In such a case, respective observations of a
nonlinear system to be identified could be partitioned into distinct data sets according
to different descriptions. However the boundaries of sets of observations depend on
the value of unknown thresholds – observations are divided into regimes dependent
on whether some observed threshold variable is smaller or larger than the threshold.
Therefore, the problem of identification of unknown parameters of linear blocks of the
H-W systems could be solved, if a simple way of partitioning the available data sets
were found in the case of unknown thresholds of both saturations. Afterwards the esti-
mates of parameters of regression functions could be calculated by processing particles
of non-clipped observations to be determined. Comparing with [9, 10, 11] we extend
here our research on the parametric identification of linear parts of block-oriented H-W
systems with saturation nonlinearities by processing input-output observations.

2. Statement of the problem

The H-W system given in Fig. 1 consists of a static nonlinearity f (·,η) followed by a
linear part G(q,�) and by the other static nonlinearity f (·,β). The linear part of the
H-W system is dynamic, time invariant, causal, and stable. It can be represented by a
time invariant dynamic system (LTI) with the transfer function G(q,�) as a rational
function of the form

G(q,�) = b0 + b1q
−1 + . . . + bmq−m

1 + a1q
−1 + . . . + amq−m

= B(q,b)

1 + A(q,a)
(1)

with a finite number of parameters

�T=(b0, b1, . . . , bm,a1, . . . , am),
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Fig. 1. The block-oriented H-W system with the process noise v(k) and that of the measurement e(k).
The linear dynamic part G(q,�) of the H-W system is parameterised by �, while the static
nonlinear parts f (·, η) – by η and f (·, β) – by β . Signals: u(k) is input, y(k) is output, s(k),
g(k), x(k), h(k) are unmeasurable intermediate signals.

bT = (b0, b1, . . . , bm),

aT = (a1, . . . , am), (2)

that are determined from the set � of permissible parameter values �. Here q−1 is a
backward time-shift operator and the set � is restricted by conditions on the stability
of the respective difference equation.

The nonlinear parts f (·,η) and f (·,β) are saturation nonlinearities of the forms

f (z,η) =



−η if z � −η,

z if −η < z � η,

η if z > η,
(3)

and

f (z,β) =



−β if z � −β,
z if −β < z � β ,
β if z > β ,

(4)

respectively, both of which should be partitioned into three functions.
The output signal

y(k) = h(k) + e(k) = f (x(k),β) + e(k), (5)

is generated by the output nonlinearity of the H-W system (4) as a response to the
unknown intermediate signal

x(k) = g(k) + v(k), (6)

with

g(k) = G(q,�)s(k) = G(q,�)f (u(k),η). (7)

and u(k) as a true input of the H-W system. The process noise v(k) and the mea-
surement noise e(k) are added to an intermediate signal x(k) and to the output y(k),
respectively. Noises are mutually noncorrelated sequences of independent Gaussian
variables with zero means and variances σ 2

v ,σ 2
e .

The aim of the given paper is to estimate parameters (2) of the linear part (1) by
processing N pairs of data u(k) and y(k) ∀ k ∈ 1,N, of the H-W system (Fig. 1) under
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the assumption that no less than 50% of their observations, respectively, have passed
through both saturation nonlinearities (3), (4) without clipping.

3. The parameter estimation procedure

Assuming that the process noise v(k) ≡ 0, one could approximate the H-W system (1)–
(7) by the infinite impulse response (IIR) system described by

y(k) = b0u(k) + b1u(k − 1) + . . .

+ bmu(k − m) + a1y(k − 1) + . . . + amy(k − m) + e(k) (8)

∀ k ∈ ν,N, or the expression in the matrix form

Y = ��. (9)

Here

Y = (
y(ν),y(ν + 1), . . . , y(N − 1),y(N)

)T (10)

is the (N − ν) × 1 vector consisting of y(k) values, ν = m + 1, and

� =




u(ν) . . . u(1) −y(ν − 1) . . . −y(1)

u(ν + 1) . . . u(2) −y(ν) . . . −y(2)
...

...
...

...
...

...

u(N) . . . u(N − ν) −y(N − 1) . . . −y(N − 1 − ν)


 (11)

is the full rank (N − ν)× (2m+1) regression matrix, consisting of observations of the
non-noisy input u(k) and noisy output y(k) ∀ k ∈ ν,N.

Let us now rearrange the data in the vector Y in an ascending order of their values
reordering the associated rows of matrix �, too. One could carry out it by interchang-
ing equations in the initial system (9). Then the vector Y and matrix � should be
partitioned into three data sets:

Y1 = �1� – the left-hand data set,
Y2 = �2� – the middle data set, and
Y3 = �3� – the right-hand data set according to three regimes of nonlineari-

ties (3), (4).
Here Y1,Y2,Y3 are (N1 −ν)×1,N2 ×1 and N3 ×1 vectors, respectively, �1,�2,�3
are (N1 − ν) × (2m + 1),N2 × (2m + 1) and N3 × (2m + 1) matrices, respectively,
N = N1 + N2 + N3 − ν .
Thus the initial system (9) is reordered into the system

Ỹ = �̃�; (12)

with

Ỹ =



Y1
Y2
Y3


 , �̃ =




�1
�2
�3


 (13)
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by interchanging the equations in (9).
The left-hand side data set Y1 (N1 − ν samples) consists of the values equal to

negative β , the middle data set Y2 (N2 samples) of the values higher than negative β ,
but lower than β , and the right-hand side data set Y3 (N3 samples) of the values equal
to β , if the measurement noise e(k) is also absent. The observations of the middle data
set ỹ(k) ∀ k ∈ N1 + 1,N2 are equivalent to those output observations y(k) that passed
nonlinearity (4) without clipping.

In spite of the unknown threshold β , one could get most equations corresponding to
the middle data set Y2 simply by choosing the upper interval bound slightly lower than
the 75 % and the lower interval bound slightly higher than the 25 % of the reordered
equations in (12). It could be mentioned that the equations corresponding to the middle
data set still contain the input observations u(k) ∀ k ∈ ν,N that have been clipped by
the nonlinearity (3), when their values are less or equal to −η or more than η in (3).
These equations of system (12) should be rejected, too. It could be done, first, using
the same rearrangement of the input data u(k) ∀ k ∈ ν,N, second, marking the obser-
vations that are present in both side-sets of the rearranged input data, third, reordering
the rows in Y2 and �2 in the right order again, and, fourth, deleting equations contain-
ing the input data to be marked. Afterwards, by compressing the vector Ŷ2 and matrix
�̂2, respectively, one will have Ŷ2 and �̂2 with some portions of missing data within
them, belonging to the unknown left-hand and right-hand side sets of rearranged ũ(k)

and ỹ(k) ∀ k ∈ ν,N.
The estimates of parameters (2) of the transfer function G(q,�) are calculated

according to

�̂ =
(
�̂

T

2 �̂2

)−1
�̂

T

2 Ŷ2. (14)

Here

�̂
T =

(
b̂, â

)T
, b̂T =

(
b̂0, b̂1, . . . , b̂m

)
, âT = (

â1, . . . , âm

)
(15)

are (2m + 1) × 1, (m + 1) × 1,m × 1 vectors of the estimates of parameters (2), re-
spectively.

Really, the measurement noise e(k) is present, therefore it could be difficult to de-
cide whether some observed threshold value that is close to the boundaries of respec-
tive data-sets, belongs to the middle data-set. In order to determine how the same
process noise realization and different realizations of measurement noise affect the ac-
curacy of estimation of unknown parameters, we have used the Monte Carlo simulation
with 10 data samples, each containing 100, 500, 1000 input-output observation pairs,
respectively. 10 experiments with the same realization of the process noise v(k) and
different realizations of the measurement noise e(k) of different levels of its intensity
were carried out. The intensity of noises was assured by choosing respective signal-to-
noise ratios (SNR) (the square root of the ratio of signal and noise variances). For the
process noise, the SNRv was equal to 100 and for the measurement noise SNRe: 1, 10,
100. As inputs for all given nonlinearities, the periodical signal and white Gaussian
noise with variance 1 were chosen. In each ith experiment the estimates of parameters
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Table 1. Averaged estimates of the parameters b1, a1 with their confidence intervals (the first line for each
estimate corresponds to the periodical signal, while the second line to the Gaussian white noise as inputs)

Estimates SNRe = 1 SNRe = 10 SNRe = 100 N N2

b̂1 −1.22 ± 0.46 −1.14 ± 0.39 −0.97 ± 0.33 100 49
−1.38 ± 0.57 −0.98 ± 0.31 −0.98 ± 0.35 100 51

â1 0.01 ± 0.45 0.02 ± 0.27 0.09 ± 0.25 100 49
0.03 ± 0.39 0.05 ± 0.18 0.07 ± 0.23 100 51

b̂1 0.14 ± 0.58 0.34 ± 0.37 0.81 ± 0.19 500 247
0.83 ± 0.43 0.87 ± 0.36 0.92 ± 0.24 500 251

â1 0.47 ± 0.45 0.33 ± 0.21 0.15 ± 0.07 500 247
0.26 ± 0.38 0.28 ± 0.07 0.09 ± 0.02 500 251

b̂1 0.38 ± 0.15 0.34 ± 0.08 0.3 ± 0.04 1000 500
0.37 ± 0.17 0.36 ± 0.09 0.3 ± 0.03 1000 498

â1 −0.06 ± 0.19 −0.35 ± 0.14 −0.49 ± 0.06 1000 500
−0.07 ± 0.18 −0.48 ± 0.16 −0.47 ± 0.08 1000 498

were calculated. During the Monte Carlo simulation, averaged values of the estimates
of parameters and their confidence intervals were calculated. In Table 1 for each input
the averaged estimates of parameters of the simulated H-W system (Fig. 1) with the
linear part (1) (b1 = 0.3; a1 = −0.5) and saturation nonlinearities (3), (4) with η = 1.0,
β = 1.5 and with their confidence intervals (the significance level α = 0.05) are pre-
sented. It should be noted that, in each experiment here, the value of SNRv was fixed
and the same, while the values of SNRe were varying due to different realizations of
e(k). The Monte Carlo simulation (Table 1) implies that the accuracy of parametric
identification of the H-W system depends on the intensity of process and measure-
ment noises as well as on the type of the input signal and the number of non-clipped
input-output observation pairs to be processed according to (14).

The problem of identification of block-oriented H-W systems could be essentially
reduced by a simple input data rearrangement in an ascending order of their values.
Thus, the available data are partitioned into three data sets. Later on the estimates of
unknown parameters of linear regression model could be calculated by processing the
respective middle data sets of the rearranged input and associated output with missing
observations that are clipped by the saturation input-output nonlinearities.
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REZIUMĖ

R. Pupeikis. Apie Hameršteino–Vinerio sistem ↪u identifikavim ↪a

Straipsnyje nagrinėjamas Hameršteino–Vinerio sistem ↪u tiesinės dalies, aprašomos skirtumine lygtimi su
nežinomais koeficientais ir soties tipo netiesiškumais junginys. Parodyta, kad pertvarkius ↪iėjimo-išėjimo

signal ↪u stebėjimus pagal didėjančias j ↪u reikšmes, galima išskirti vidurin ↪e stebėjim ↪u dal ↪i. Nežinom ↪u tiesinės

Hameršteino–Vinerio sistemos dalies koeficient ↪u ↪iverčiai gaunami mažiausi ↪uj ↪u kvadrat ↪u metodo algo-

ritmu, apdorojant stebim ↪u, bet pertvarkyt ↪u ↪iėjimo-išėjimo signal ↪u duomenis. Pateikti modeliavimo rezul-

tatai.


