On an extension of Girard algebras

Remigijus Petras GYLYS (MII) e-mail: gyliene@ktl.mii.lt

1. Introduction

In this note we present a generalization of the canonical extension of Girard algebras recently introduced and studied by U. Höhle and S. Weber [1]–[4]. Our results are submitted without proofs. We are going to detail it in a subsequent paper.

2. Girard algebras, MV-algebras and Boolean algebras

A lattice-theoretic definition of a Girard algebra, of a *MV*-algebra and of a Boolean algebra are the following:

DEFINITION 2.1. A Girard algebra G is a bounded lattice (with the join \lor , with the meet \land , with the least element $0 = \bigwedge G$ and with the geatest element $1 = \bigvee G$) together with commutative semigroup operation \circ with 1 as unit and 0 as zero such that

1. $a \circ (b \lor c) = (a \circ b) \lor (a \circ c)$ (distributivity between \circ and \lor),

2. There exists a further binary operation $: G \times G \rightarrow G$ defined by

 $a \setminus b = \bigvee \{c \in G \mid a \circ c \leq b\}$ (existence of residuals),

which satisfies the following axiom:

 $(a \setminus 0) \setminus 0 = a$ (Involution).

In any Girard algebra the residual complement $\perp: G \rightarrow G$ and the dual operation $\exists: G \times G \rightarrow G$ associated with \circ can be defined by

$$a^{\perp} = a \setminus 0$$
 and $a \uplus b = (a^{\perp} \circ b^{\perp})^{\perp}$.

DEFINITION 2.2.

1. A Girard algebra G is called an MV-algebra ("multi-valued") iff the following axiom is satisfied:

$$a \circ (a \setminus b) = a \wedge b$$
 (Divisibility).

2. An MV-algebra is called a Boolean algebra iff $\circ = \wedge$.

3. *I*-extension of Girard algebras

In [2] was introduced the "canonical" extension G_1 of a Girard algebra G, the Girard algebra $G_1 = \{\langle a_1, a_2 \rangle \in G \times G \mid a_1 = a_2\}$, where G was identified with its diagonal $G_{\triangle} = \{\langle a, a \rangle \mid a \in G\}$. In this note we generalize this canonical extension of G to the *I*-extension defined as follows.

DEFINITION 3.1. Given a Girard algebra G and the set of natural numbers $I := \{1, 2, ..., n\}$ for $n \ge 2$, by I-extension G^I of G we shall understand the bounded lattice of all isotone functions $a: I \rightarrow G$. We write $a \le b$ to mean that $a_i \le b_i$ for all i = 1, 2, ..., n. The lattice-theoretic operations and universal bounds are given by, for all $i \in I$,

$$(a \wedge b)_i = a_i \wedge b_i, (a \vee b)_i = a_i \vee b_i, 0_i = 0 \text{ and } 1_i = 1.$$

If we identify G with all constant functions of G^{I} , then G is a sublattice of G^{I} .

THEOREM 3.2. Let G be a Girard algebra. Then G^{I} is also a Girard algebra with structure (denoted by the same symbols) given by:

1.
$$(a \circ b)_i = \bigvee_{j,k=1}^n \{a_j \circ b_k \mid j+k=i+1\}$$

2. $(a \setminus b)_i = \bigwedge_{j=1}^{n-i+1} a_j \setminus b_{i+j-1},$
3. $(a^{\perp})_i = (a_{n-i+1})^{\perp},$

4.
$$(a \uplus b)_i = \bigwedge_{j,k=1} \{a_j \uplus b_k \mid j+k=n+i\}.$$

COROLLARY 3.2. Let G be Girard algebra, and G^{I} be its I-extension. Then the following assertions are equivalent:

1. G^I is an MV-algebra.

2. G is a Boolean algebra.

4. Conditioning and mean value generation

In [1]–[2] were proposed the following axioms for conditioning operators and mean value functions in Girard algebras:

DEFINITION 4.1. Let G be a Girard algebra. A binary operation $|: G \times G \rightarrow G$ is called a conditioning operator on G iff | satisfies the following axioms:

1.
$$a|1 = a$$
,

2. $(b \circ (b \setminus a))|b = a|b,$

- 3. $a \leq b \Rightarrow a | c \leq b | c$,
- 4. $b \leq c$ and $c \circ (c \setminus a) \leq b \circ (b \setminus a) \Rightarrow a | c \leq a | b$
- 5. $(a|b)^{\perp} = (a^{\perp} \circ b)|b$, particularly, $(0|0)^{\perp} = 0|0$.

LEMMA 4.2 (Lemma 4.3 [2.)] Every conditioning operator fulfils the following property:

$$b \circ (b \setminus a) \leq a | b \leq b \setminus a.$$

DEFINITION 4.3. Let G be a Girard algebra. A mean value function is an isotone, idempotent binary (not necessarily commutative) operation on G, i.e., a map C: $G \times G \rightarrow G$ satisfying the following axioms

- 1. $C_{a,a} = a$ (*idempotency*),
- 2. $C_{a,b} \leq C_{c,d}$ whenever $a \leq c, b \leq d$ (isotonocity). A mean value function C is said to be compatible with the residual complement in G iff C satisfies the following additional condition $(C_{a,b})^{\perp} = C_{b^{\perp},a^{\perp}}.$

PROPOSITION 4.4 (Theorem 4.5 [2.)] Let G be a Girard algebra and C be a mean value function on G which is compatible with the residual complement in G. Then C induces a conditioning operator | on G by

$$a|b = C_{b \circ (b \setminus a), b \setminus a}.$$

PROPOSITION 4.4 (Theorem 4.6 [2.)] Let G be an MV-algebra and | be a conditioning operator. Then the following assertions are equivalent:

1. | is a mean value based conditioning operator;

2. | satisfies the condition $a \leq b \Rightarrow (a \wedge c)|(c \setminus a) \leq (b \wedge c)|(c \setminus b)$.

5. Conditioning operators and mean value functions on *I*-extensions of Girard algebras

LEMMA 5.1. Let G be a Girard algebra and G^I be the I-extension of G, where $I = \{1, 2, ..., n, n+1, ..., 2n\}$ with $n \ge 1$. Every mean value function B on G induces a mean value function C on G^I by:

$$(C_{a,b})_i = \begin{cases} B_{a_i,a_{i+1}\wedge b_i} & \text{if } i = 1,\dots,n, \\ (B_{(b_i)^{\perp},(b_{i-1}\vee a_i)^{\perp}})^{\perp} & \text{if } i = n+1,\dots,2n. \end{cases}$$

Moreover, C on G^{I} is compatible with the residual complement in G^{I} and satisfies the further property:

$$(C_{a,b})_i = \begin{cases} a_1 & \text{if } i = 1, \dots, n, \\ b_1 & \text{if } i = n+1, \dots, 2n, \end{cases}$$

whenever a and b are constant functions, $a \leq b$, $a = a_1$, $b = b_1$.

530

REMARK 5.2 (existence of mean value functions). Let G be a Girard algebra. Then the following maps B^1 and B^2 defined by

$$B_{a,b}^1 = a$$
 and $B_{a,b}^2 = b$

are mean value functions on G. Further the corresponding mean value functions C^1 and C^2 (in the sense of the preceding lemma) are given by

$$(C_{a,b}^{1})_{i} = \begin{cases} a_{i} & \text{if } i = 1, \dots, n, \\ b_{i} & \text{if } i = n+1, \dots, 2n, \end{cases}$$
$$(C_{a,b}^{2})_{i} = \begin{cases} a_{i+1} \wedge b_{i} & \text{if } i = 1, \dots, n, \\ b_{i-1} \vee a_{i} & \text{if } i = n+1, \dots, 2n \end{cases}$$

PROPOSITION 5.3. Let G^I be the *I*-extension of a Girard algebra G with $I = \{1, 2, ..., 2n\}$. Then there exists a mean value function C on G^I which is compatible with the residual complement in G^I and satisfies the condition in the preceding lemma. Further the mean value based conditioning operator | corresponding to C satisfies the additional property:

$$a|b = \begin{cases} b_1 \circ (b_1 \setminus a_1), & \text{if } i = 1, \dots, n, \\ b_1 \setminus a_1, & \text{if } i = n+1, \dots, 2n \end{cases}$$

whenever a and b are constant functions, $a \leq b$, $a = a_1$, $b = b_1$.

6. Uncertainty measures on *MV*-algebras

DEFINITION 6.1. ([2]) Let G be an MV-algebra, and $^{\perp}$ and $^{\pm}$ be the residual complement and the dual operation associated with \circ . A map $m: G \rightarrow [0, 1]$ is called an uncertainty measure iff m satisfies the following conditions:

1.
$$m(0) = 0, m(1) = 1,$$

2. $a \leq b \Rightarrow m(a) \leq m(b)$.

An uncertainty measure *m* is said to be additive iff it satisfies the axiom: 3. $a \circ b = 0 \Rightarrow m(a \uplus b) = m(a) + m(b)$.

Now we are going to present the last important result of this note (generalizing Theorem 6.5 [2]), to establish the existence of additive measure extension in the Boolean case. For this, we need the following observation

LEMMA 6.2. Let G be a Boolean algebra, and m be a probability measure on it. Let $a_1, a_2, ..., a_n$ and $b_1, b_2, ..., b_n$ (with $n \ge 2$) be elements of G such that $a_1 \le a_2 \le \cdots \le a_n$ and $b_1 \le b_2 \le \cdots \le b_n$. Then for every i = 1, ..., n - 1 the equality holds:

$$m\left(\bigwedge_{j,k=1}^{n} \{a_{j} \lor b_{k} \mid j+k=n+i\}\right)$$

= $\sum_{j,k=1}^{n} \{m(a_{j} \lor b_{k}) \mid j+k=n+i\} - \sum_{j,k=1}^{n} \{m(a_{j} \lor b_{k}) \mid j+k=n+i+1\}.$

Finally, we arrive at

10

THEOREM 6.3. Let G be a Boolean algebra, and m be a probability measure on G. Let G^I be the MV-algebra I-extension of G. Then m has a unique extension to an additive uncertainty measure \tilde{m} on G^I , i.e., there exists a unique additive uncertainty measure \tilde{m} on G^I such that the restriction of \tilde{m} to G coincides with m. In particular, \tilde{m} is given by

$$\tilde{m}(a) = \frac{1}{n} \sum_{i=1}^{n} m(a_i).$$

References

- U. Höhle, S. Weber, Uncertainity measures, realizations and entropies, in: J. gaoutsias, R.P.S. Mahler, H.T. Nguyen (Eds.), *Random Sets: Theory and Applications*, Springer-Verlag, Heidelberg/Berlin/NewYork (1997), pp. 259–295.
- U. Höhle, S. Weber, On conditioning operators, in: U. Höhle, S.E. Rodabaugh (Eds.), *Mathematics of Fuzzy Sets*, Kluwer Academic Publishers, Boston/Dordrecht/London (1999), pp. 653–673.
- 3. S. Weber, Conditioning on MV-algebras and additive measures, Part I, *Fuzzy Sets and Systems*, **92** (1997), 241–250.
- 4. S. Weber, Conditioning on MV-algebras and additive measures, Further results, in: D. Dubois, H. Prade, E.P. Klement (Eds.), *Fuzzy Sets, Logics and Reasoning about Knowledge*, Kluwer Academic Publishers, Boston/Dordrecht (1999), pp. 175–199.

REZIUMĖ

R.P. Gylys. Apie Žiraro algebrų plėtinį.

Aprašomas Žiraro algebrų kanoninio plėtinio apibendrinimas.