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Introduction

In the past few years, a fractional Brownian motion has been the subject of numerous
investigations. The fBm BY, H > 1/2, has the following kernel representation with
respect to the standard Brownian motion:

t
Bﬁ:/ Ky (t,s)dW,,
0

where Ky is the deterministic kernel
1 L g ! H—1L H-3
KH(t,s):cH<H—§>s2 u’' 2w —s)""2du
N

with the normalizing constant cg.
Let »" = {t,?: 0 < k < n} be the sequence of partitions of the interval [0, 1] with
t =k/n. Define

(1 (] &
A = n/ KH<—,u>du'—k,
t /; i " Vn
where [nt] denotes the integer part of nt, {£;'} are i.i.d. random variables with E&]' =0

and D[ = 1. Sottinen [4] has proved that A" B B asn — oo.

Denote by D([0, 1], R9) the space of all mappings x: [0, 1] — R¢ that are right-
continuous and admit left-hand limits equipped with the Skorokhod .7 topology.

The aim of this note is to find conditions under which the convergence

(X”,A”,/ X;‘dAg‘> N <X,BH,/ XsstH>
0 0

holds, where {X"} is a sequence of cadlag processes such that

x". A" 25 (x,B") in D(0.1].R?).
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Denote by C*(R) the space of all continuous functions g: R — R such that

lg(x) — g(»)l

sup |g(x)| + sup a
X XF#y lx — Y|

THEOREM 1. Let O <a < 1, g > 2, andl<p<2besuchthat%+%>l.Let

{X"} be a sequence of cadlag processes with q-bounded variation, and let f € C*(R).
Assume that sup, Ev, (X"; [0, 1]) < +o0. If

(x", A" 25 (X, B") in DR, R?), (1)
where X is a continuous process, then

(X”,A”,/ﬂXﬁ)dAﬁ) N (X,BH,/.f(XS)dBSH) in D([0, 1], R).
0 0

1. Basic notions and auxiliary results

The p-variation, 0 < p < oo, of a real-valued function f on [a, b] is defined as

n
vp(f5la, b =sup > | () = fla-n]”,
7 k=1
where the supremum is taken over all subdivisions s = {x;: i =0,...,n} of [a,b]

such that a = xg < x1 < --- < x, = b. Denote by W, ([a, b]) the class of all functions
on [a, b] with bounded p-variation.

Let f € Wy(la,b]) and h € Wy([a,b]) with0 < p <00,q >0, 1/p+1/q > 1.
Then the integral | ab f dh exists as the refinement Riemann—Stieltjes (RRS) integral
if f and h have no common discontinuities on the same side at the same point. In
particular, this necessary condition is satisfied if f is left-continuous and 4 is right-
continuous or vice versa. If the integral exists, the Love—Young inequality

b
/ fdh = fD[hb) —h@)]| < Cp 4 Vy(f;La, b)) Vy(h; La, b]) 2

holds for all y € [a, b], where C), ; = {(p’1 + q’l) and ¢(s) = Zn>1 n=s.
Let f € Wy(la,b]) and p; > p > 0. Then

Vp (f31a, b1) < Osc(f; [a, b P =P/ PV PP (£ [a, b)), 3)
where Osc(f [a, b]) = sup{| f (x) — F(V)|: x, € [a, b]}.

2. Proof of the theorem

Let Ay,...,A,, Bj,...,B, be random variables such that E|A;|?, E|B;|? < +o0,
i=1,...,n. Let S, , be the largest value of the products

mo Iyp,m 1/q
(ZElAkI") (ZElBkl")
k=1 k=1
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for which Ay = Aj11+...+Aj,, and By =B 1 +...+ By, 1 =i <...<ix <
. < im41 =m, m < n, are the corresponding sums of successive random variables
A; and B;, respectively. A version of this lemma was proved in [2].

LEMMA 2. Assume that % + % > 1. Then
(1) there exists an index k (1 < k < n) such that

1 1/p 1 1/q
ElABi < (— S ElA” ~ S EIB
|[AxBi| < (n E|Ag| ) (n E|B| ) .
k=1 =1
(ii)

quSPJI’

E‘— > ABj+ ) ABj|<C

1<i<j<k k<i<j<n

where Cp 4 = c(p~ +q7h.
The prove of this lemma is the same as that of the Love—Young inequality in [5], [3].
Proof of Theorem 1. Sottinen [4] has proved that, forall s < ¢,

as n — o0. 4)

@>2H

BIA" (@) — A" (5) < (2~

‘We show that

[n-]
Zf(X”(tk DA™ @) = A" (1)) —>/ f(X()dB(5), n—o0. (5

Let us fix a partition of the interval [0, 1]. Denote it by »™. By (1) we get
(X, AT, ., XP ), AR ) S (X, BE @, ..., X @b, BY @)
as n — oo. Thus,

D L& O(AT G = AM )

k=1
Zf(X(tk DB =B ) as n— oo. (6)
k=1

Assume that m < n and set 3¢ = 2" U 3" = {1t 1 € 2" U "}, r(t) = maxik: t; <
t, 1y € x}. Then

[mi] [nt]
LX) (AT @ = AT D) = ) FXE ) (AN — AT )

k=1 j=1
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[mt] r(t)
< DX ) (AT = ANG)) = D FX (o)) (A" () — A1)
k=1 Jj=1
r(t) [n1]
D LX) (A" — A" E-D)) = Y FXT G D) (A @) — A" )

k=1

j=1
= I (1) + I (0).

We estimate only 7{"", since the proof of 17" is the same.

Note that
[mrt]
@y =) > (FXE ) — FX-1) (A" (1)) — A1)

k=1 jeA}

[mrt]
= ‘ =0 (FX ) — fFXMG)) (A) — A"t -) |
k=1 i<j
l,_/EAZl

where A" ={j: t; € 3,1 | <t; <t;"}. Thus, by Lemma 2 we have

Esggli”’”aKZE‘— > (f(X"ai))—f(X"(ri1>>)(A"<rj>—A"<rj1>)‘
IS k=1 i<j
i,_/'eA}(”

m
m,n,k
S Cpala Zsp,q/a’
k=1
where Sy: ;/(]; is the largest value of the products

r afq o T 1/p
(ZEU(X"(sj))—f(X"(sj1>>|‘1/“) (ZEM"(sj)—A”(sjnw) (7)

j=1 j=1

fortf” | =so<...<s, =1",s; €, r €N Further, by (4), for p > 1/H, we have

r alq ;T 1/p
(ZEIf(X”(sj)) - f(X”(sjl>>|‘1/“) (ZElA”(sj) - A”(sjnv’)

j=1 j=1

< 1o (Bog (X5 [y D) (1 — 1)

and by the Holder inequality

m

X n alq M " 1/p
Y oS < |f|a(Zqu<X"; [r;:n,r;f])) (Z(t,T —" )’ )
k=1

k=1 k=1
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1 H-1
< f L (Bvg (X710, 1D)Y max g — g7, |71
1<k<m
Thus,
Esup I{""(t) + Esup ;" (1) > 0 as m,n — oo. (8
<1 <1
Denote

X"(@t):=X@") for telf 4", 1<k<m—1,or te[t" "],
and

H™(X)= sup |X(t)—X"@)|.

0<r<1
Letg; > g and ;—1 + % > 1. By inequality (3) we get

[mrt]

t
sup| > FOX (B~ 87 )~ [ rocoas!
<t 0
lmt] [mtl/m
<sup Zf(xa;?1))(3”(:?)—3”(:511))—/0 f(X;,)dB
IS =1

+sup| £ (X,)|H™(B™)

<1
< 4Cp,q1/(x|f|(x (Hm(X))Ol(fIl*fl)/fh V;“I/fh (X, [O, 1])Vp(BH, [O, 1])
+1fla Ve (X: [0, 1)) H™ (BT). 9)

Now by Lemma 4.2 of [1] and estimates (6), (8), and (9) we get (5).
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REZIUME
K. Kubilius. Atsitiktiniy integraly trupmeninio Brauno judesio atZvilgiu aproksimacijos klausimu

Nustatytos salygos, kada stohastinis integralas pasirinktos trupmeninio Brauno judesio aproksimacijos
atzvilgiu silpnai konverguoja i stohastinj, integrala trupmeninio Brauno judesio atzvilgiu.



