
Liet. matem. rink, 46, spec. nr., 2006, 232–237

Sequent calculus usage for BDI agent implementation

Adomas BIRŠTUNAS (VU)
e-mail: adomas.birstunas@mif.vu.lt

Abstract. BDI logic is widely used to describe agent based systems, since it can express a lot of different
real world domains with three main operators: belief, desire and intention. There are lots of works where
BDI logic is used as descriptive language,but authors do not talk about implementation issues ([5,2,4,8,1]).
There is even known general agent implementation scheme, which do not describe how to use formal logic
for such scheme implementation ([12]). The main aim of this paper is to show the bridge, which connects
formal and practical parts of logic. We describe how sequent calculus can be used for implementing some
parts of general scheme. In this paper, we show how flexible constraints can be implemented. Sequent
calculus usage is illustrated with simple examples.

Keywords: agent implementation, BDI logic, sequent calculus.

1. Introduction

Humans always tried to make machines or systems work for their purposes. It is espe-
cially applicable in our days when systems and machines are used in most areas of our
life. We want to make machines work independently as possible. It is the reason why,
we can see a great interest on agent research in recent years. Agent can be defined
as entity (machine, software system . . . ), which can change environment via its ac-
tions, can be influenced by environment, and has the following properties: autonomy,
proactiveness, reactivity and social ability ([12]). The autonomy is the most important
property when we want to make systems work independently.

BDI agent is an agent which is mostly described with three main concepts: beliefs
(corresponds the information agent has about the world), desires (states of the world
agent wants to be true in an ideal world), and intentions (states of the world agent
tries to achieve). Agents from different domains can be described with these three
concepts. These concepts are intuitively understandable, and, it is not surprise, that
there are known a lot of BDI agent application ([12,5,9,2,4,8,1]). BDI logic is modal
logic with three main modalities: BEL (for agents beliefs), DESIRE (for desires),
and INT END (for intentions).

The core thing in agent implementation is independent decision making. We have
to construct an agent which selects an action to perform independently and consider-
ing to the current agent vision of the world state. Such a decision making assures the
autonomy property of an agent, and it is the hardest part of agent implementation.
Wooldridge suggested some general scheme for BDI agent implementation ([12]).
General scheme describes functions used and these functions usage in a scheme. Un-
fortunately, implementation issues of these functions was left opened. In this paper, we



Sequent calculus usage for BDI agent implementation 233

show how such functions implementation can be based on sequent calculus. Sequent
calculus is well known, researched and is suitable for automation. General scheme do
not force to use formal logic method at all, but if we do not use formal method, then
BDI logic will be used only as descriptive language. In other words, agent, imple-
mented without formal logic method usage, cannot be called real BDI agent.

In Section 2, we introduce BDI logic we use, and we present general scheme for
BDI agent implementation. In Section 3, we shown how sequent calculus can be used
for implementing some parts of BDI agent, and how flexible constraints for intentions
can be implemented.

2. BDI logic and general scheme

In this section, we describe syntax of used BDI logic. In our paper, we deal with BDI
logic formulas with quantified agents.

We define BDI formulas as follows: if p is propositional symbol, then p is
formula; if φ, ψ are formulas, i is constant for agent, x is variable for agent,
M ∈ {BEL,DESIRE,INT END}, then ¬φ , φ ∨ ψ , Mi(φ), ∀xMx(φ), ∃xMx(φ)

are also formulas. We do not use ∧,⊃,⇔ and formulas φ ∧ ψ , φ ⊃ ψ , φ ⇔ ψ are ab-
breviations of ¬(¬φ ∨ ¬ψ), ¬φ ∨ ψ , (φ ⊃ ψ) ∧ (ψ ⊃ φ) respectively. Formulas of
the shape Mi(φ) we call M modalized formulas, or just modalized formulas to de-
note formulas of all three types of M . If �1,�2 are sets of BDI logic formulas, then
expression of the shape �1 → �2 is a sequent of BDI logic.

We use fragment of the rich multi-agent BDI logic (LORA – Logic of Ra-
tional Agents) introduced in [12]. We do not use mutual beliefs, and we use re-
stricted quantifiers. We use quantifiers only for agents. Remark, that expression of
the shape ∀xBELx(∃y(INT ENDy(φ)) is formula, but expression of the shape
∀x∃y(BELx(INT ENDy(φ)) is not. Logics with quantified agents are used then
number of agents are not known in advance, or just for getting more compact ex-
pressions. Similar BDI logic fragment is used in [7], where sequent calculus MBQ∗
and decision procedure are introduced. In [7], DESIRE and INT END operators
are omitted, since for these operators nothing special needed to get decidability. We
use Kripke possible worlds semantics, which is fully described in [12].

Now we present general scheme for BDI agent implementation ([12]). Agents be-
haviour can be understood as a loop consisted of 3 steps: 1) getting information from
the environment; 2) selecting an action for execution; 3) executing selected action
(changing the environment). This scheme shows how agent of any type must work.
In BDI model, agent (besides its actions) is mostly described using 3 main con-
cepts: belief, desire, intention. Every belief (desire, intention) can be modeled as BEL

(DESIRE, INT END) modalized formula. Current agent state can be defined by
sets of current beliefs, desires and intentions. Agent must take into account its beliefs,
desires and intentions during action selection. Action selection is the most important
part of the agent implementation, since it ensures the main property – autonomy. In
[12], Wooldridge suggest to separate action selection into 3 functions (options, filter,
plan) as it is shown in Fig. 1. In Fig. 1, p denotes all information obtained from the
environment, B, D, I – sets of all agents beliefs, desires, intentions, and π denotes



234 A. Birštunas

1. while true do
2. get next percept p;
3. B := brf(B, p);
4. D := options(B, I);
5. I := filter(B, D, I);
6. π := plan(B, I);
7. execute(π);
8. end while

Fig. 1. General scheme for BDI agent implementation.

some agents plan. Every plan consists of ordered list of actions – π = α1,α2, . . . ,αk

(αi is action). In other words, plan is some simple instructions for an agent.
As shown in general scheme, function brf is used to renew current agents beliefs

according to information obtained from the environment. In function options, agent
generates its desires according to new beliefs and last intentions. Of course, some
intentions can contradict to chosen desires or to each other. Function filter is used to
leave only such intentions, those do not contradict to agents current beliefs, desires and
intentions. Finally, agent must select some plan to execute (function plan). In function
execute, agent just performs all actions described in a selected plan π .

Only three functions deals with BDI logic formulas, so, only for these functions
implementations sequent calculus can be used. We do not talk about function options,
since, generally, agent generates the same desires every time. There are left functions
filter and plan, where sequent calculus usage is rational. In the next section we discuss
how these functions can be implemented.

For example, we model food gatherers. The environment is a grid-like world, where
agents can move from one cell to a neighbouring cells if there is no other agent in that
cell. Food can appear in every cell at random. Agents must gather food and bring it to
the special depot cell. This example was taken from the first contest on Multi-Agent
systems organized during CLIMA-VI1 ([3]).

Considering this example, all agents have desire to test all cells and bring all food
to depot, and these desires do not change.

3. Functions plan and filter implementation

In function plan, we have to select one plan according to current beliefs and intentions.
In works [11,9], there are used invocation conditions for actions. If invocation condi-
tion is satisfied then action must be selected. In works [11,9], authors talk about invo-
cation conditions without any context of general BDI agent implementation scheme,
but such an approach can be easily adopted for function plan implementation.

For every predefined plan πj , we set some condition formula Fj . We put all pairs
(formula and plan) in the priority queue, as shown in Fig. 2.

For example, suppose, that agent has an intention to reach a depot, which is on
the second cell on the right from current position, and agent has two plans to reach

1CLIMA-VI – VI International Workshop on Computational Logic in Multi-agent Systems.



Sequent calculus usage for BDI agent implementation 235

1) F1 − π1;
. . .

k) Fk − πk;

Fig. 2. Scheme for function plan implementation.

depot: π ′ = αr ,αr , and π ′′ = αd,αr ,αr ,αu (here αr – ‘go right’, αd – ‘go down’,
αu – ‘go up’). Both plans, have instructions how to reach depot. It is wise to select
plan π ′ only if agent has an intention to reach depot and there is no block on the
left cell. Plan π ′′ can be selected if agent just have an intention to reach depot. Sup-
pose, that On(x,y) = t ⇔ agent is on the cell (x,y), Block(x,y) = t ⇒ there is
a block on the cell (x,y) (such as other agent). So, for plan π ′, we may set condi-
tion INT ENDI (On(xc + 2, yc))&¬Block(xc + 1, yc), and for plan π ′′ condition –
INT ENDI (On(xc + 2, yc)). Of course, it is rational to prefer plan π ′ to π ′′ , since it
is shorter, and it is why, we set higher priority for plan π ′ then for plan π ′′.

Particular schemes are predefined for every agent. Function plan gets set of for-
mulas for current beliefs (define them by �1) ant set of formulas for current intentions
(�2). According to scheme in Fig. 2, agent checks whether condition formula F1 is sat-
isfied if current beliefs and intentions are true. If formula F1 is satisfied, then function
plan returns plan π1, otherwise, agent checks whether formula F2 is satisfied, and so
on. At least one formula Fj must be satisfied. For such a formula check, sequent calcu-
lus can be used. If we want to check whether formula Fj is satisfied if current beliefs
and intentions are true, we have to check whether the following sequent is derivable:
�1,�2 → Fj . If sequent is derivable, then condition formula Fj is satisfied and πj is
returned.

In function filter, we have to delete all inconsistent intentions from all possible.
Like in function plan, we have predefined set of all possible plans, in function filter we
have predefined set of all possible intentions (it is a set of INT END modalized for-
mulas: INT ENDI (φ1), . . . , INT ENDI (φl)). For every intention INT ENDI (φj ),
we have to define condition Gj . If condition is satisfied, then intention is inconsistent
with desires (�1) or beliefs (�2). So, we have to check every condition formula Gj and
if condition formula Gj is satisfied, then we have to delete intention INT ENDI (φj ).
After all condition check, function plan returns all nondeleted intentions. Sequent cal-
culus can be used to check whether condition Gj is satisfied. If sequent �1,�2 → Gj

is derivable, then condition is satisfied and intention INT ENDI (φj ) must be deleted.
In such a function filter implementation, we have predefined conditions and these

conditions cannot change during agent life. We present new approach for function
filter implementation. The main idea is to make condition as a special type of be-
lief. We suggest to use such a BEL modalized formula for condition: BELI (β →
¬INT ENDI (φj )) (here β is a condition formula). It says, that agent beliefs, that if
some condition β is satisfied, then it does not intend to achieve φj . We define all such
beliefs for conditions by �3. So, if sequent �1,�2,�3 → BEL(¬INT ENDI (φj )

is derivable, then intention INT ENDI (φj ) must be deleted.
It is function filter implementation with flexibility property, since agent can drop old

and create new conditions for intentions during its life in function brf. It even allows



236 A. Birštunas

to obtain such beliefs for conditions from other agents during communication. One
another advantage is that for every intention, we have to derive only one sequent to
check whether it contradicts to all known conditions, no matter, how many conditions
it must satisfy.

For example, for INT ENDI (On(xc + 2, yc)), agent can have condition:
BELI (∃iBELi(Block(xc + 2, jc)) → ¬INT ENDI (On(xc + 2, yc))) (agent be-
lieves, that if there are some agent, which believes that there is a block on the cell
(xc + 2, yc), then it does not intend to reach that cell). During agent life, there can
be some new condition obtained. Suppose, that agent γ informs that it is not wise to
go to the depot if there agent γ is in the depot (say, because it stays there for a long
time). In function brf, our agent can generate belief for new condition for intention
INT ENDI (On(xc + 2, yc)):
BELI (BELγ (On(xc + 2, jc)) → ¬INT ENDI (On(xc + 2, yc))) (agent believes,
that if agent γ believes that it is on the cell (xc + 2, jc), then our agent does not intend
to reach that cell).

4. Conclusion

In this paper, we show how BDI agent can be implemented with formal logic usage.
We present general scheme for BDI multi-agent implementation, and suggest to use
sequent calculus while implementing some parts of it. We show how flexible con-
straint conditions for intentions can be implemented. All implementation schemes are
illustrated with examples.

References

1. M.M. Cheikhrouhou, BDI-oriented agents for network management, in: GLOBECOM’99, vol. 3
(1999), pp. 1964–1968.

2. S. Coffey, D. Gaertner, Using pheromones, broadcasting and negotiation for agent gathering tasks, in:
Pre-proc. CLIMA VI (2005), pp. 267–273.

3. M. Dastani, J. Dix, The first contest on multi-agent systems based on computational logic, in: Pre-
proc. CLIMA VI (2005), pp. 261–266.

4. C. Dixon, F. Gago, M. Fisher, W. Hoek, Using Temporal Logics of Knowladge in the Formal Verifica-
tion of Security Protocols, Tech. r. ULCS-03-022.

5. N. Jennings, M. Wooldridge, Applications of intelligent agents, in: N. Jennings and M. Wooldridge
(Eds.), Agent Technology: Foundations, Applications, and Markets, Springer (1998), pp. 3–28.

6. R.A. Kowalski, F. Sadri, From logic programming towards multi-agent systems, Annals of Mathemat-
ics and Articial Intelligence, 25(3–4), 391–419 (1999).

7. R. Pliuskevicius, A. Pliuskeviciene, Decision procedure for a fragment of mutual belief logic with
quantified agent variables, to appear in: LNAI 3900, Proc. CLIMA VI (2006).

8. O. Rana, M. Winikoff, L. Padgham, J. Harland, Applying conflict management strategies in BDI
agents for resource management in computational grids, in: Proc. of the Australasian Conference on
Computer Science, Melbourne, ACM Press (2002).

9. A.S. Rao, M. Georgeff, BDI agents: from theory to practice, in: Proc. ICMAS-95 (1995), pp. 312–319.
10. A.S. Rao, AgentSpeak(L): BDI agents speak out in a logical computable language, in: MAAMAW’96,

LNAI 1038, Springer (1996).
11. M. Wooldridge, N. Jennings, Intelligent agents: theory and practice, The Knowledge Engineering Re-

view, 10(2), 115–152 (1995).
12. M. Wooldridge, Reasoning about Rational Agents, The MIT Press (2000).



Sequent calculus usage for BDI agent implementation 237

REZIUMĖ

A. Birštunas. Sekvencinio skaičiavimo panaudojimas BDI agent ↪u realizavimui

Pateikta bendra BDI agento realizavimo schema. Parodyta kaip tam tikr ↪u dali ↪u realizavimuigali būti panau-

dotas sekvencinis skaičiavimas. Pasiūlyta, kaip galima realizuoti lankstesn ↪e funkcij ↪a filter.


