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Specialization of derivations in modal logic S5
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e-mail: aida@ktl.mii.lt

Abstract. Loop-check-free decidable specialization of sequent calculus for modal logic S5 is presented.
Soundness and completness of this calculus is proved.
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1. Introduction

Modal logics are widely used in artificial intelligence and computer science. Therefore
one of the main objective is to design effective and simple to use decision procedures
for these logics.

A proof that suitable logical calculus (e,g., sequent or tableaux calculus) for a modal
logic allows us to get a decision procedure is crucial but it is not enough. Check of
termination of a decision procedure is very important problem and require to keep an
information on previous part of a derivation.

Traditional techniques used for test termination of a decision procedure in modal
(e.g., knowledge-based) sequent (and tableau) calculi is based on loop-check [4].
Namely, before applying any rule it is checked if this rule was already applied to
“essentially the same” sequent; if this is the case we block the application of the rule.
However, loop-check method often leads to an inefficient implementation (see,e.g.,
[2]). Therefore loop-check is often considered as useless. In [5], [10] efficient loop-
check for modal logics KT, K4, S4, tense logic Kt , and a fragment of intuitionistic
logic was presented using sequents extended by notion of history. For modal logic T

loop-check-free sequent calculus is presented in [5] using sequents with two halves.
In [3], [6] a contraction-free calculus for propositional intuitionistic logic was pro-
posed. A contraction-free calculus entirely excludes loop-check in derivations. In [7],
a contraction-free calculus for S4 was constructed, however only for sequents in a cer-
tain normal form. Alternative approach [1] is to translate a modal logic into a more
simple logic. Interesting approach is proposed in [9] allowing us to decrease a com-
plexity of loop-check for various modal logics. A decision procedure for a fragment of
mutual belief logic with quantified agent variables (with loop-check only for sequents
derivations of which require induction-like axiom) is proposed in [12].

In this paper the modal logic S5 is considered. This modal logic is considered as
the logic of idealized knowledge. The aim of this paper is to get a specialization of
derivations for the modal logic S5 that allows us to present loop-check-free decision
procedure. This procedure is carried out by means of invertible loop-check-free se-
quent calculus.
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2. Kanger-style sequent calculus KS5

To get cut-free sequent calculus for S5 S.Kanger proposed to use indexed propositional
symbols along with usual propositional ones [8]. Let P be a propositional symbol.
Then P k, where k is a natural number, is an indexed propositional symbol. Below we
present a slightly different from Kanger procedure of indexation of formula of S5:

1. (P k)l = P k+l , where k, l are natural numbers; it is assumed that P 0 = P .
2. (A � B)l = Al � Bl , where � ∈ {⊃,∧,∨}.
3. (¬A)l = ¬Al .
4. (�A)l = �A.
A sequent is a formal expression � → �, where �, � are multisets of formulas.
Let KS5 be a calculus obtained from Kanger-style logical calculus [8] adding the

following modal rules:

� → �,Ai

� → �,�A
(→ �),

Ak,�A,� → �

�A,� → �
(� →).

where i is a natural number not entering in the conclusion of the rule (→ �); k ∈
{0,1,2, . . .}.

In [11] the following theorems are proved:

THEOREM 1. The calculus KS5 is a conservative extension of a traditional
Hilbert-style calculus HS5, i.e., the calculus KS5 is sound and complete.

THEOREM 2. The structural rules of weakening and cut are admissible in KS5.

From the admissibility of the weakening rules it follows the invertibility of the
rule (� →).

A derivation in a calculus I is called an atomic one if the main formula of an axiom
is a propositional symbol. It is obvious that backward applying rules of KS5 each
derivation in KS5 can be reduced to an atomic one with the same end-sequent.

LEMMA 1. Let S (S1) be a conclusion (premise, correspondingly) of a rule (i)

where (i) is a logical rule. Let KS5 �V S where V is an atomic derivation of S in
KS5 and h(V ) is a height of this derivation. Then KS5 �V ∗

S1 and h(V ∗) � h(V ).

Proof. By induction on h(V ).

A backward proof search in the calculus KS5 is not terminative, in general. In-
deed, let S be a sequent �(P ∨ Q) → P . Then the backward proof search con-
tains an infinitive branch because we repeatedly get almost the same sequents Sm =

m times
︷ ︸︸ ︷

Q,. . . ,Q,�(P ∨ Q) → P , m ∈ {1,2, . . .}.
To prune the infinite branch the method of loop-check [4] is used. Since the sequents

S1 and S2 are almost the same we block applications of the rules (� →) and (∨ →)

and conclude that KS5 � S.
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3. Loop-check-free sequent calculus K1S5

To avoid loop-check in KS5 we shall show that applications of the rule (� →) can
be restricted in such way that it is not possible to apply this rule repeatedly using the
same occurence of formula as the main formula of the rule.

Along with usual modality � let us introduce a marked modality �∗ which has the
same semantical meaning as non-marked modality � and serves as a stopping device
for a backward application of the rule (� →).

Let K1S5 be a calculus obtained from the initial calculus KS5 replacing the rule
(� →) by the following one:

Ak,�∗A,� → �

�A,� → �
(�∗ →),

where in the conclusion of the rule the modality � in the main formula �A is not
marked (the restriction on main formula).

It is obvious that if K1S5 � S then KS5 � S (∗).
To prove the inverse implication let us introduce some auxiliary calculi.
Let KC

1 S5 be a calculus obtained from the calculus K1S5 adding the following
structural rule of contraction:

�A,�σA,� → �

�A,� → �
(C� →),

where σ ∈ {∅,∗}.
Let KdC

1 S5 be a calculus obtained from the calculus KC
1 S5 adding the rule (�∗d →)

which is obtained from the rule (�∗ →) by dropping the restriction on main formula.
It is obvious that if KS5 � S then KdC

1 S5 � S (∗∗).
Let us prove the following

LEMMA 2. If KdC
1 S5 �V S then KC

1 S5 � S, where S does not contain marked
modality.

Proof. The proof is carried out using induction on the number of applications of
the rule (�∗d →) in V denoted by n(V ). If n(V ) = 0 then V ∗ coincides with V .

Let n(V ) > 0. Then let us consider the lowest application of the rule (�∗d →) in
V . Let �∗A be the main formula of this lowest application of the rule (�∗d →). Let
S1 = Ak,�∗A,� → � be the premise of this lowest application of the rule (�∗d →).
Since the end-sequent S of V does not contain marked modality �∗, below this lowest
application of (�∗d →) must be an application of the rule (�∗ →) with the main
formula �A. Let us replace this application of (�∗ →) with the applications of the
rules (C� →) and (�∗ →) (with the main formula �A). So, instead of the lowest
application of the rule (�∗d →) we get the application of the rule (�∗ →) with the
main formula �A and with the premise S′

1 = Ak,�A,�∗A,� → �. A derivation of
the sequent S′

1 can be get from the derivation of the sequent S1 using admissibility of
weakening. Thus, instead of the derivation V we get a derivation V ′ such that n(V ′) <

n(V ). Therefore, by induction assumption we can get KC
1 S5 � S.
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LEMMA 3. If K1S5 �V �A,�σA,� → �, where σ ∈ {∅,∗}, then K1S5 �
�A,� → �.

Proof. The proof is carried out using induction on h(V ).

LEMMA 4. If KS5 � S then K1S5 � S.

Proof. The proof follows from Lemmas 2, 3, and (∗∗).

LEMMA 5. KS5 � S if and only if K1S5 � S

Proof. The proof follows from Lemma 4, and (∗).

It is easy to see that the restriction on main formula in the rule (�∗ →) destroys
invertibility of the rule (�∗ →). Indeed, it is obvious that K1S5 � �P → �(P ∨ Q)

but K1S5 � P k,�∗P → �(P ∨Q). To save the invertibility of (�∗ →) let us introduce
a notion of primary sequent. A sequent S is a primary one if S = �1,�� → �2 and
�i (i ∈ {1,2}) is empty or consists of propositional symbols, �� is empty or consists
of the formulas of the shape �A.

LEMMA 6 (reduction to primary sequents). It is possible automatically construct
a reduction of a sequent S to a set {S1, . . . ,Sm}, where Sj (1 � j � m) is a primary
sequent. Moreover, if K1S5 �V S, where V is an atomic derivation, then K1S5 �Vj Sj

(j ∈ {1, . . . ,m}) and h(Vj ) � h(V ).

Proof. Follows from invertibility of logical rules and the rule (→ �).

Let K2S5 be a calculus obtained from the calculus K1S5 replacing the rule (�∗ →)

by the following one:

�1,A
k,�∗A,�� → �2

�1,�A,�� → �2
(�∗

p →),

where �i (i ∈ {1,2}) is empty or consists of propositional symbols, moreover, �1 ∩�2
is empty; �� is empty or consists of the formulas of the shape �σB, σ ∈ {∅,∗}. In
the conclusion of this rule the modality � in the main formula �A is not marked (the
restriction on main formula).

LEMMA 7. Let K2S5 �V �1,�A,�� → �2, where V is an atomic derivation.
Then K2S5 �V ∗

�1,A
k,�∗A,�� → �2, i.e. the rule (�∗

p →) is invertible.

Proof. The proof is carried out by induction on h(V ) and using Lemma 6.

It is obvious that if K2S5 � S then K1S5 � S. Using Lemma 6 we get that if K1S5 �
S then K2S5 � S. Thus, K1S5 � S if and only if K2S5 � S. From this fact and relying
on Lemma 5 and Theorem 1 we get
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THEOREM 3. The calculus K2S5 is sound and complete.

A primary sequent S of the shape �1,�∗� → �2 is a critical one if �1 ∩ �2 is
empty. A derivation V of a sequent S in K2S5 is successful if each branch of V ends
with an axiom. In this case K2S5 � S. A derivation V of a sequent S in K2S5 is un-
successful if V contains a branch ending with a critical sequent. In this case K2S5 � S .

From invertibility of the rules of K2S5 and shape of these rules we get

THEOREM 4. For a sequent S one can automatically construct a successful or
unsuccessful derivation of the sequent S in K2S5, i.e., K2S5 is a loop-check-free de-
cidable calculus.
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REZIUMĖ

A. Pliuškevičienė. ↪Irodym ↪u specializacija modalumo logikai S5

Pateikta korektiška ir pilna specializacija sekvenciniam skaičiavimui modalumo logikai S5. Pasiūlytas

specializuotas skaičiavimas ↪igalina gauti išprendžiam ↪aj ↪a procedūr ↪a, kurios realizacijoje nėra cikl ↪u.


