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1. Introduction

Reasoning about knowledge has been shown to be widely applicable in computer sci-
ence and artificial intelligence (see, e.g., [1], [3]). Complete calculi for logics of knowl-
edge are well known in the case of finite set of agents (see, e.g., [1]). However, in many
applications the set of agents is not known in advance. As it is indicated in [4] it is often
easiest to model the set of agents as an infinite set.

In [4] complete Hilbert-style calculus for common knowledge logic with infinitely
many agents is presented. This logic is obtained from logic of knowledge KS5n, i.e.,
from multi-modal logic S5n with arbitrary n, by adding common knowledge operator
(restricted in some way).

It is well-known that Hilbert-style calculi allow us to reflect semantics of consid-
ered logic. However, for automatization of reasoning Gentzen-style (sequent) cut-free
calculi are more appropriate. It is desirable that the rules of a considered calculus
would be invertible. This property allows us to preserve derivability in a backward
proof search. The cut-free calculus for the logic S5 had been constructed in the vari-
ous papers (an exhaustive exposition of these results is presented in [8]).

The aim of this paper is to construct sequent calculus for the subset of logic of
knowledge considered in [4]. This subset does not contain common knowledge op-
erator, i.e., is the logic KS5n. The constructed sequent calculus instead of cut rule
contains an effective analytic cut rule which allows to construct the premise of the
rule from its conclusion automatically. All rules of constructed sequent calculus are
invertible.

2. Ohnishi–Matsumoto-style sequent calculus for KS5n

The language of KS5n contains: (1) a set of propositional symbols P , P1, . . ., Q, Q1,
. . .; (2) a set of agent constants i, i1, i2, . . . (i, ij ∈ {1,2, . . .}); (3) a set of knowledge
modalities of the shape K(i), where i is an agent constant; (4) logical symbols: ⊃, ∧,
∨, ¬.

Modalities K(i) satisfy equivalence relation.
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Formula of KS5n is defined in a traditional way.
The formula K(i)A means: “agent i knows that A”. Along with formulas we con-

sider sequents, i.e., formal expressions � → � where �, � are multisets of formulas.
Let us introduce Ohnishi–Matsumoto-style sequent calculus GS5n. The calculus

GS5n is obtained from Kanger-style calculus for propositional logic [5] adding (Cut)
rule and the following rules for knowledge modalities:

A, K(i)A,� → �

K(i)A,� → �
(Ki →),

K(i)�1 → K(i)�1,A

K(i)�1,� → �, K(i)�1, K(i)A
(→ Ki),

where K(i)�1 and K(i)�1 are empty or consists of formulas of the shape K(i)B,
The calculus GS5n with n = 1 was introduced and founded in [6], [7]. As in [6],

[7] we can prove soundness and completeness of GS5n with any n.
Without the rule (Cut) the calculus GS5n is incomplete. Indeed, let GS5′

n be
a calculus obtained from GS5n by dropping (Cut). Let S be a sequent P →
K(1)¬K(1)¬P . It is easy to verify that GS5n � S using the formula ¬K(1)¬P as
the cut formula, but GS5′

n � S.

3. Cut-free sequent calculus for KS5n

In this section we present a cut-free sequent calculus G1S5n for KS5n. Instead of
the (Cut) rule the calculus G1S5n contains an analytic-cut-style rule which destroys
subformula property.

The calculus G1S5n is obtained from the calculus GS5n by dropping (Cut) and
replacing the rule (→ Ki) by the following rule:

�1i , K(i)�1i → K(i)B, K(i)�2i ,A

�1, K�1 → �2, K�2, K(i)A
(→ KC

i ),

where �j (j ∈ {1,2}) is empty or consists of propositional symbols and �1 ∩ �2 is
empty;

K�j (j ∈ {1,2}) is empty or consists of formulas of the shape K(l)A;
K(i)�j1 (j ∈ {1,2}) is empty or consists of formulas of the shape K(i)B,
B = ¬�∨

1 ∨ ¬K(l)�∨
1l

∨ �∨
2 ∨ K(l)�∨

2l
, where l 	= i; K(l)�∨

j l
(j ∈ {1,2}) is

obtained from K�j deleting all formulas of the shape K(i)Bji ; here and below
ρ∇∨ = ∨m

i=1 ρAi where ρ ∈ {∅,¬} and ∇ = A1, . . . ,Am.
Thought the rule (→ KC

i ) destroys a subformula property the premise of this rule is
constructed automatically from the conclusion and depends on the choice of the main
formula of this rule.

EXAMPLE 1. (a) Let S be a sequent P → K(1)¬K(1)¬(P ∨ Q). Then bottom-
up applying (→ KC

i ) to S we get S1 = → K(1)¬P,¬K(1)¬(P ∨ Q). Bottom-up
applying (→ ¬) to S1 we get S2 = K(1)¬(P ∨ Q) → K(1)¬P . Bottom-up applying
(→ KC

i ), (→ ¬), (¬ →), (→ ∨) from S2 we get an axiom. Hence G1S5n � S.
(b) Let S be a sequent → K(2)P, K(1)¬K(1)¬(¬K(2)P ∨ Q). We have two

possibilities.
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(1) Let us choose K(1)¬K(1)¬(¬K(2)P ∨ Q) as the main formula of the appli-
cation of the rule (→ KC

i ). Then bottom-up applying (→ KC
i ), (→ ¬) from S we get

S1 = K(1)¬(¬K(2)P ∨ Q) → K(1)K(2)P . Bottom-up applying (→ KC
i ), (¬ →),

(→ ∨) from S1 we get S2 = K(1)¬(¬K(2)P ∨ Q) → ¬K(2)P,Q, K(2)P . Bottom-
up applying (→ ¬) to S2 we get an axiom with the main formula K(2)P . Therefore
G1S5n � S.

(2) Let us choose K(2)P as the main formula of the application of the rule
(→ KC

i
). Then bottom-up applying (→ KC

i
) to S we get S∗

1 =→ K(2)K(1)¬K(1)

¬(¬K(2)P ∨ Q),P . Bottom-up applying (→ KC
i ) to S∗

1 we get the initial sequent.
Using method of loop-check [2] we return to S, block the bottom-up application of the
rule (→ KC

i ) with the main formula K(2)P . As in the case (1) we get G1S5n � S.

It is obvious that bottom-up applying rules of G1S5n each derivation in G1S5n

can be reconstructed into an atomic one (i.e., the main formula of any axiom is a
propositional symbol) with the same end-sequent.

LEMMA 1. Let i be a logical rule of GσS5n (σ ∈ {∅,1}) and GσS5n �V S

where V is an atomic derivation of S and h(V ) is a height of this derivation. Then
GσS5n �V ∗

S∗ where S∗ is a premise of a rule i, moreover, h(V ∗) < h(V ).

Proof. By induction on h(V ).

Using induction on the height of a derivation we can prove admissibility of the
structural rule of weakening in Gσ S5n (σ ∈ {∅,1}). From this fact we get invertibility
of the rule (Ki →). To get invertibility of the rule (→ KC

i ) in G1S5n we shall prove
invertibility of this rule in the calculus GS5n. Having proved (in next section) that
GS5n � S only and if only G1S5n � S we get invertibility of (→ KC

i ) in G1S5n.

LEMMA 2. The rule (→ KC
i ) is invertible in GS5n.

Proof. Let S be a sequent �1, K�1,→ �2, K�2, K(i)A and GS5n � S. Apply-
ing logical rules (→ ¬), (→ ∨) to S we get S1 = K(i)�1i → B, K(i)�2i , K(i)A,
where K(i)�j1 (j ∈ {1,2}) and B are the same as in definition of the rule (→ KC

i ).
Applying (→ Ki) to S1 we get S2 = K(i)�1i → K(i)B, K(i)�2i , K(i)A. It is obvi-
ous that GS5n � S3 = K(i)A → A, where A is arbitrary formula. Applying (Cut) to
S2 and S3 and using admissibility of weakening we get G1S5n � �1i, K(i)�1i →
K(i)B, K(i)�2i ,A, i.e., the premise of (→ KC

i
). Thus, (→ KC

i
) is invertible in

GS5n.

Let GC
1 S5n be a calculus obtained from the calculus G1S5n by adding (Cut). Let

us prove that GC
1 S5n � S only and if only GS5n � S. First let us prove the following

lemma.

LEMMA 3. The rule (→ KC
i ) is admissible in GS5n.
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Proof. Let S∗ be a sequent �1i , K(i)�1i → K(i)B, K(i)�2i ,A and GS5n � S∗.
Applying (Ki →) to S∗ we get S1 = K(i)�1i → K(i)B, K(i)�2i , K(i)A, where
K(i)�j1 (j ∈ {1,2}) and B are the same as in definition of the rule (→ KC

i
). Since

GS5n � S3 = K(i)B → B, applying (Cut) to S2 and S3 we get GS5n � K(i)�1i →
B, K(i)�2i , K(i)A. Using Lemma 1 (i.e., invertibility of logical rules) we get GS5n �
S = �1, K�1,→ �2, K�2, K(i)A, i. e., the rule (→ KC

i
) is admissible in GS5n.

Using Lemma 3 we get

LEMMA 4. If G1S5n � S then GS5n � S.

LEMMA 5. The rule (→ Ki) is admissible in G1S5n.

Proof. Let S∗ be a sequent K(i)�1 → K(i)�2,A and G1S5n � S∗. Using ad-
missibility of weakening we get G1S5n � K(i)�1 → K(i)B, K(i)�2,A, where B

is the formula from definition of the rule (→ KC
i ). Applying (→ KC

i ) to S1 we
get G1S5n � �1, K�1,→ �2, K�2, K(i)A, i. e., the rule (→ Ki) is admissible in
G1S5n.

Using Lemma 5 we get

LEMMA 6. If GS5n � S then GC
1 S5n � S.

From Lemmas 2 and 6 we get

LEMMA 7. GS5n � S if and only if GC
1 S5n � S.

4. Admissibility of rule (Cut) in G1S5n

To prove admissibility of rule (Cut) in calculus G1S5n let us state some additional
lemmas.

Let S(K(i)A+) means that the formula K(i)A occurs positively in S.

LEMMA 8. Let G1S5n �V S(K(i)A+), where V is an atomic derivation of S and
h(V ) is a height of this derivation. Then G1S5n �V ∗

S(A) and h(V ∗) � h(V ).

Proof. Using proof-theoretical considerations.

LEMMA 9 (admissibility of contraction rules). Let G1S5n �V A,A,� → �

(G1S5n �V � → �,A,A), where V is an atomic derivation and h(V ) is a height
of this derivation. Then G1S5n � A,� → � (G1S5n � � → �,A, respectively).

Proof. By induction on h(V ) and using Lemma 8.

LEMMA 10 (admissibility of (Cut)). Let G1S5n �V1 � → �,A and G1S5n �V2

A,� → � where V1, V2 are atomic derivations. Then G1S5n � �,� → �,�.
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Proof. Lemma is proved using double induction < g(A),h(V1) + h(V2) >, where
g(A) is complexity of the formula A defined in a traditional way. Let (i) and (j ) are
rules applied last in derivations V1 and V2, correspondingly. Let us consider only the
case when (i) is the rule (→ KC

i
), (j ) is (Ki →), A = K(i)M , and A = K(i)M is

the main formula of the applications of the rules (→ KC
i ), (Ki →). In this case the

end of V1 has the following shape:

S′
1 = �1i , K(i)�1i → K(i)B, K(i)�2i ,M

S1 = �1, K�1 → �2, K�2, K(i)M
(→ KC

i ),

where all notations are the same as in definition of the rule (→ KC
i ).

The end of V2 has the following shape:

S′
2 = M, K(i)M,� → �

S2 = K(i)M,� → �
(Ki →),

Applying (Cut) to S1 and S′
2 (with K(i)M as the cut formula) and using in-

duction on the height, we get G1S5n � S∗
1 = �1, K�1,M,� → �2, K�2,�. Ap-

plying (Cut) to S′
1 and S∗

1 (with M as the cut formula) and using induction on
complexity of cut formula, we get G1S5n � S∗

2 = �1i , K(i)�1i ,�1, K�1,� →
K(i)B, K(i)�2i ,�2, K�2,�. Using Lemmas 8, 9, invertibility of logical rules, and
the rule (Ki →) we get G1S5n � �1, K�1,� → �2, K�2,�, i.e., we get a desired
derivation.

From Lemmas 10, 7 we get

LEMMA 11. GS5n � S if and only if G1S5n � S.

In the previous section it was proved that all rules of G1S5n, except of (→ KC
i ),

are invertible in G1S5n and the rule (→ KC
i
) is invertible in GS5n. From Lemma 11

invertibility of (→ KC
i ) in G1S5n follows.
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REZIUMĖ

R. Pliuškevičius. Žinojimo logika su begaliniu agent ↪u skaičiumi

Sukonstruotas sekvencinis skaičiavimas žinojimo logikai su begaliniu agent ↪u skaičiumi. Sukonstruotas
skaičiavimas neturi piūvio taisyklės ir visos jo taisyklės yra apverčiamos.


