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Properties of the coefficient estimators
for the linear regression model with heteroskedastic
error term
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Abstract. In this paper we present estimated generalized least squares (EGLS) estimator for the coefficient
vector β in the linear regression model y = βX + ε, where disturbance term can be heteroskedastic. For
the heteroskedasticity of the changed segment type, using Monte-Carlo method, we investigate empirical
properties of the proposed and ordinary least squares (OLS) estimators. The results show that the empirical
covariance of the EGLS estimators is smaller than that of OLS estimators.
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1. Regression model coefficient estimators

Classical results in the econometric theory show that if coefficients of the linear regres-
sion model are estimated by the OLS method when error term is not homoskedastic, an
estimator is obtained which, although remains unbiased, consistent and asymptotically
normal, is no longer minimum variance unbiased estimator (MVUE). Thus diagnos-
tic testing for heteroskedasticity has to be undertaken before further analysis starts. If
the null hypothesis of homoskedasticity is rejected, a generalized estimator should be
found.

We consider a linear regression model

yj = fT(j/n)β + εj , j = 1, . . . ,n,

where β is a coefficient vector of length d and f : [0,1] → R
d is a given function,

f (t) = (
f1(t), . . . ,fd (t)

)T
, t ∈ [0,1],

disturbances are

εj = g(j/n)uj ,

with i.i.d. random variables uj , Eu1 = 0, Eu2
1 = 1, and the function g: [0,1] → R;

T denotes transposition operation. The null hypothesis H0 is specified by g(j/n) ≡ σ 2.
All other choices of g lead to heteroskedastic alternatives.

Set

X = (
f (1/n),f (2/n), . . . ,f (n/n)

)T
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And denote y = (y1, . . . , yn)T.
Let us assume now that the alternative hypothesis is true, i.e., Eε2

j
= g2(j/n) �= σ 2

for some j = 1, . . . ,n. It is well known (see [1], for example) that regression coeffi-
cients estimated by OLS method,

β̂ = (XTX)−1XTy, (1)

though are unbiased, have the covariance matrix which is no longer σ 2(XTX)−1. If
we denote covariance matrix of ε = (ε1, . . . , εn) by

G = diag
(
g2(1/n) . . . , g2(n/n)

)
, (2)

we obtain generalized least squares (GLS) estimator

β̂G = (XTG−1X)−1XTG−1y. (3)

Even more if we replace G by some of its estimator Ĝ we obtain estimated GLS
estimator

β̂EG = (XTĜ−1X)−1XTĜ−1y. (4)

It is also known that β̂G and β̂EG under regularity conditions possess at least asymp-
totically consistency, normality and are more efficient than β̂.

2. Heteroskedasticity of the changed segment type

In this paper we are especially interested in the so called changed segment het-
eroskedasticity alternative, which can be formulated as follows:

H1 There exist integers �∗ and k∗ and a real τ �= σ such that g(j/n) = τ if j ∈
{k∗ + 1, . . . , k∗ + �∗} and g(j/n) = σ if j ∈ {1, . . . ,n} \ {k∗ + 1, . . . , k∗ + �∗}.

In [2], for this type of alternative a class of test statistics is presented, which are
obtained by taking a certain functional (defined in a Hölder space) of the polygonal
line process constructed the partial sums of square residuals of the model. Without
going much into detail assume that the residuals ε̂ = (̂ε1, . . . , ε̂n)

T are defined by

ε̂j = yj − fT(j/n)β̂ , j = 1, . . . ,n,

with OLS estimator β̂ defined in (1). For 0 � α < 1/2, we introduce a class of test
statistics

Tn,α = max
1��<n/2

(�/n)−α max
0�k<n

∣∣∣∣
k+�∑

j=k+1

(̂
ε 2
j − 1

n

n∑
j=1

ε̂ 2
j

)∣∣∣∣.
Let (Wt , t ∈ [0,1]) be a standard Wiener process and let (Bt , t ∈ [0,1]) be a Brow-

nian bridge Bt = Wt − tW1, t ∈ [0,1]. The class of limiting test statistics then is

Tα = sup
0<h<1/2

h−α sup
0�t<1

|Bt+h − Bt |, 0 � α < 1/2. (5)
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In this paper we will rely on theoretical results (two theorems) stated and proved in
[2]. The first theorem shows that a class of test statistics Tn,α converges in distribution
to Tα and the second shows that this class is consistent for the heteroskedasticity al-
ternatives of various types. Here as a special case we will deal only with the changed
segment type alternative.

Define sample variance of the squared residuals

δ̂2
n = n−1

n∑
j=1

(̂
ε 2
j − n−1

n∑
j=1

ε̂ 2
j

)2
. (6)

THEOREM 1. Let 0 < α < 1/2 and 1 � p < 1/(1 − α). Assume that H0 holds and
the function f is continuous and has finite p variation. Then

n−1/2̂δ−1
n Tn,α

D−→
n→∞ Tα

if and only if

lim
t→∞ t2/(1/2−α)P(|ε1| > t) = 0.

The same is true for α = 0 provided Eε4
1 < ∞.

THEOREM 2. Assume that H1 is true and Eu4
1 is finite. Also assume that σ is fixed

and τ = τn. If

�∗ → ∞, �∗/n → θ ∈ [0,1/2), (1 − �∗/n)|τ 2 − σ 2|n−1/2+α(�∗)1−α → ∞,

then for 0 � α < 1/2

n−1/2̂δ−1
n Tn,α

P−→
n→∞ ∞.

Under H1, if �∗, k∗, τ and σ are known then G, as in (2), is a diagonal matrix with
elements equal τ 2 when j ∈ {k∗ + 1, . . . , k∗ + �∗}, and the rest of elements equal σ 2.
It is natural approach to estimate the unknown G by taking estimates �̂∗ , k̂∗, τ̂ and
σ̂ instead of the corresponding parameters. This approach leads to the estimated GLS
estimator of β defined in (4), if the null hypothesis of the homoskedasticity is rejected.

First define

T ′
n(k,�) =

∣∣∣∣
k+�∑

j=k+1

(̂
ε 2
j − 1

n

n∑
j=1

ε̂ 2
j

)∣∣∣∣,
T ′

n,α(�) = (�/n)−α max
0�k<n

T ′
n(k,�).

Then as an estimators of �∗ and k∗ consider

�̂∗ = min
{
�: T ′

n,α(�) = max
0<i<n/2

T ′
n,α(i)

}
,

k̂∗ = min
{
k: T ′

n(k, �̂∗) = max
0�i<n

T ′
n(i, �̂

∗)
}
.
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Next, we estimate τ as an empirical standard deviation of ε̂ over the index set {̂k∗ +
1, . . . , k̂∗ + �̂∗}, and the estimate of σ is an empirical standard deviation of residuals
with the indexes from {1, . . . ,n} \ {̂k∗ + 1, . . . , k̂∗ + �̂∗}. Using these estimates we
obtain Ĝ.

Unfortunately we can not yet provide the reader with the results showing that these
estimators converge to their true values, nevertheless we can give empirical results to
justify our reasoning.

3. Monte Carlo experiment

Set d = 2 and f (t) = 1 + t , i.e., f1(i/n) ≡ 1 and f2(i/n) = i/n, i = 1, . . . ,n and
analyze a case with n = 128. We take u1 ∼ N(0,1). Under the null hypothesis we
fix σ = 1.0 and for the changed segment type of alternative we generate a changed
segment of length �∗ = 16 which begins at k∗ = 56 and is of size τ = 2.0.

In this experiment we are interested in the properties of OLS estimator β̂ , GLS esti-
mator β̂G and EGLS estimator β̂EG defined in (1)–(4). Knowing the configuration of
the experiment we can compute true values of the parameters of interest. For example,
Eβ̂ = Eβ̂G = Eβ̂EG = (1,1)T both under the null hypothesis and under the alterna-
tive. Let us denote covariance matrices of the estimators by V(β̂) = E(β̂ −1)(β̂ −1)T,
V(β̂G) and V(β̂EG). Then under H0,

V(β̂) = V(β̂G) =
(

0.0316 – 0.0472
– 0.0472 0.0938

)
,

and under the alternative H1 it is easy to calculate that V(β̂) = σ ∗2(XTX)−1, where
σ ∗2 = (�∗/n)τ 2 + (1 − �∗/n)σ 2. Hence,

V(β̂) =
(

0.0435 – 0.0650
– 0.0650 0.1289

)
and V(β̂G) =

(
0.0325 – 0.0473

– 0.0473 0.0939

)
.

Thus, if we know the values of the change parameters, the GLS estimator reduces the
variance. Next we will show that the EGLS estimator also does.

For the set {b1, . . . , bR} of realizations of any statistic b, let us denote empirical
mean Mb = R−1 ∑R

i=1 bi .
First for the model without the change we have generated R = 1000 replications

of observations. For every replication we have computed β̂ and V(β̂) and obtained
MV(β̂) = (0.0315,−0.0471,−0.0471,0.0934) (writing the elements of a matrix in a
row). The results obtained are in agreement with the theoretical findings. Next with
the changed segment in variance of disturbances we again ran R = 1000 replica-
tions. If despite of the presence of heteroskedasticity we use OLS estimator we obtain
MV(β̂) = (0.0436,−0.0651,−0.0651,0.1292), just according to the theory. Then, as
was proposed, we test for a changed segment and, if H0 is rejected, find β̂EG and
V(β̂EG). We deffer the results one paragraph ahead and first add one remark.
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Table 1. Empirical power of Tn,α and mean of V(̂βEG)

α 0 1/16 1/8 3/16 1/4 5/16 3/8 7/16

pw 589 672 734 796 809 758 684 568
β1 0.0295 0.0299 0.0305 0.0310 0.0317 0.0322 0.0330 0.0340
β1β2 −0.0425 −0.0434 −0.0443 −0.0453 −0.0464 −0.0474 −0.0488 −0.0506
β2 0.0844 0.0861 0.0880 0.0899 0.0921 0.0940 0.0969 0.1004

Brownian motion in limiting statistics Tα (5) is approximated by the partial sum
process ζm(0) = 0,

ζm(t) =
[mt]∑
i=1

Zi + (
mt − [mt])Z[mt]+1 − t

m∑
i=1

Zi, t ∈ [0,1],

with normalization m−1/2 and Zi ∼ N(0,1), i = 1, . . . ,m. Taking a large value of m

for small sample sizes we obtain significantly biased approximation for the null dis-
tribution of the test statistics (especially for α close to 1/2). As a consequence wrong
critical regions for the test statistics Tn,α are obtained. In [2] the procedure is proposed
to fix this problem. First we propose to take m = n. Second we suggest taking Z2

i (and
change normalization to (2m)−1/2) instead of Zi as for small sample sizes we can not
expect CLT to work well. We use this procedure with α = i/16, i = 0, . . . ,7 and the
significance level ε = 0.05. As a result we obtain the test p-values ranging from 0.046
to 0.053, i.e., close to correct.

In Table 1 the results of experiment under H1 are presented.
For the significance level ε = 0.05, according to the critical regions obtained after

the proposed procedure, for every α we compute the number when H0 was rejected
out of total number of replications R = 1000. In other words, we find empirical power
(denoted pw in Table 3). The row indicated by βi represents sample mean of estimators
for the variance of βi , i = 1,2. And β1β2 denotes sample mean of estimators for
the covariance between β1 and β2. Note however, that we have computed the sample
means only from the realizations of estimators, when H0 was rejected. Also note that
all these estimators depend on α. We see that estimating β by β̂EG gives the most
accurate results when α = 5/16. This confirms the authors’ findings in other papers
that detection of changed segments of various lengths crucially depends on the value
of α.
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REZIUMĖ

A. Račkauskas,D. Zuokas. Tiesinioregresinio modelio su heteroskedastiškomis paklaidomiskoeficient ↪u

↪iverči ↪u savybės

Šiame darbe nagrinėjamas tiesinis regresinis modelis y = βX + ε, kurio liekanos gali būti heteroske-

dastiškos. Yra žinoma, kad, esant heteroskedastiškumui, MK metodu rastas β ↪ivertis β̂ nors ir išlieka

nepaslinktas, tačiau turi didesn ↪e dispersij ↪a. Specialaus tipo heteroskedastiškumo – pasikeitusio segmento

– alternatyvai siūlomas apibendrintas ↪ivertintas MK ↪ivertis β̂EG . Monte-Carlo metodu palyginamos β̂ ir
β̂EG dispersijos ir parodoma, kad jos atitinka paskaičiuotas tikr ↪asias, o pasiūlyto

↪
iverčio dispersija yra

mažesnė.


