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Abstract. Let S = w1S] + w282 + ... + wySy. Here §; is the sum of identically distributed random
variables and w; > 0 denotes weight. We consider the case, when §; is the sum of independent random
variables satisfying Cramer’s condition. Upper-bounds for the accuracy of compound Poisson first and
second order approximations in uniform metric are established.
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1. Introduction

Let us consider the following complex sampling design: entire population consists
of different clusters and probability for each cluster to be selected into the sample is
known. The sum of sample elements, then isequal to S = w1 S| +wy S+ ... +wySy.
Here S; are sums of independent identically distributed random variables and w; de-
note weights. Weighting can radically change the structural properties of S. For ex-
ample, even if all S; are lattice, the sum S is not. In this article, we consider the case
of random variables forming a sequence: X, X3, .... More formally, the case of se-
quences will mean that the distribution of X ; in S, does not depend on n. Sequences of
random variables are comparatively well investigated, since then the normal approxi-
mation usually is quite sharp, see, for example, the book of Petrov [4]. However, if we
have less than one moment, then accompanying distribution might be a better choice
for approximation, see [1, 5]. In this article, we extend the research of [1, 5] estimating
the effect of smoothing.

2. Notation

Let F (resp. M) denote the set of probability distributions (resp. finite signed mea-
sures) on R. The Dirac measure concentrated at a is denoted by I,, I = Iy. All
products and powers of finite signed measures W € M are defined in the convo-
lution sense, and WO = I. The exponential of W is the finite signed measure de-
fined by exp{W} = Zf:o W™ /m!. The Kolmogorov (uniform) norm |W| and the
total variation norm || W | of W € M are defined by |W| = sup, g |W((—00, x])I,
| Wi =WT®R)+ W~ (R), respectively. Here W = W — W~ is the Jordan-Hahn de-
composition. Note that |W| < ||W|.For Fe F,h >0 Levy s concentration function
is defined by Q(F, h) =sup, F{[x,x + h]}. We denote by W(t) the Fourier—Stieltjes
transform of W € M. Absolute positive constants are denoted by C.
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3. Results

We consider random variables X, X5, ... having distributions Fy, F», ... that satisfy
the following conditions:

EX; =0, E|X;|'" <oo, lim sup |F;()] <1 (j=1,2,...,N). (1)

[t]—o00

Note that we used the well-known Cramer’s condition, which means that all F; are
not purely discrete distributions. Although we did not formulate our results in terms of
w;S;, itis easy to understand that our case corresponds to the case w; X ; ~ F;, where
w; < C and X satisfies (1).

It is known that then the following estimates hold:

|F/ —expin;(Fj — D} < C(Fjn;* )

and
nj nj 2 -28
‘Fj/—exp{nj(Fj—I)}<I——21 (Fj—1) )‘San , 3)

see [1].
Now we can formulate the main result of this paper.

THEOREM 1. Let conditions (1) be satisfied and let n :==nj +ny+ ... +ny. Then

]ﬁ[F’?/’ — exp inj(Fj—I) < Ci(F,N)n™° 4
j=1 ! j=1
- =

and

N
‘ 1_[ F;'/ — exp{
j=1

I\)I'—

ni(F =D} (1-

Thus, we see that for the case of sequences the same order of accuracy can be
obtained for weighted sums as well as for the sum of identically distributed random
variables.

i Fj—1) >‘<C2(F,N)n’5.(5)

-

4. Proofs

Everywhere in the proofs, we use the same notation C for all different absolute con-
stants. We will need the following lemmas.

LEMMA 4.1. Let F,GeF, h>0anda > 0. Then
96\ 2 ~
O(F,h) < ( ) hf |F()|dt, Q(FG,h) < Q(F,h), ©6)
95 11<1/h

h C
Q(F, h) < (1 + (5)>Q(F,a>, O(expla(F = D} h) € — e (D
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If, in addition, F (t) >0, then

h/ |F(1)|dr <CQ(F, h. (8)
[tI<1/h

Lemma 4.1 contains the well-known properties of Levy’s concentration function (see,
for example, [2]).

We also use the following variant of Esseen’s smoothing estimate which is a slight
modification of inequality of Le Cam [3], see also [2]. For & € (0, 00) and a finite
measure G on R, set |G|, =sup, |G{[y,y + hl}|.

LEMMA 4.2. Let G, M € F,W € M with W(R) = 0, Then, for arbitrary h €
(0, 00), we have

Wt
Wi<C / O a4 cmin (1w, 1971
ltl<1/h

|F—G|<c/ ‘M‘dH—CQ(G,h).
lt1<1/h !

Proof of Theorem 1. We will use the following estimates:

(F;()— 1} <e €7 j=1,...,N, )
where |t]| < €, and

(Fi)—1)|<e €D, j=1,...,N (10)
where |t| > €. Here € = €(Fy, Fa, ..., Fy).

Also, for all |¢| the following estimate holds:

|Fj(0) = 1] <C(Fple'* (11)

and, for |f| <€
|1’FJ’7-/' —expln; (Fj — D)} < C(Fj)e™CED 2+ (12)

see [1], [5].
‘We then use Lemma 4.2:

N N
‘ HFJn/ - Hexp{nj(Fj —I)}‘
j=1 j=1
< / |]_[ ]_[J | €Xp nJ(F 1)}|dt
0

It

T, P =TTV exp{n<(ﬁ<—1)}
+C/ |]_[J_1 j ]_[1_1 A |dt
€

It
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N
+CQ(]_[exp{nj(1?j — D, %)

j=1
=A1+ A+ Aj. (13)
Then
SN NFY —expln (Fj — DT ITIY 41l exping (F — D)
A <C(F) ZJ_1 j S ]_[|1t=|1 ! 1_[1_]+1 dr
0
€ N_ C(F‘)CiC(F-/‘)n-/tzl’l‘|[|2+28 j*167C(F1)n112 Ai 67C(F1)n1t2
<C(F) Zj_l j j | 1_[1_]+1 dar
0 |7]
00 C(F,N
< C(F, N)/ e~ CUME 1425 ¥ =C(F,N)n™°. (14)
0 n
Similarly, we get
T 7C(F)n —C(F)n
C(F)/ <T < C(F)n8. (15)
€

Finally, using the properties of the concentration functions, we get the estimate
for As:

c (T &
Ay < ?/T‘j]j[lexp{nj(z«“j— 1)}‘dt

C €
<7/
T(o

< E /6 e=Cn? 4y +Te ") < L +Te " (16)
17\ Jo S Tn '

By substituting 7 = /i, we get A3 < C(F)n~°.
From that we easily obtain (4).
For the proof of (5) we use the following estimate:

T N
A(I?j—l)}‘dt+/ H_[exp{nj(l’*:j—l)}‘do
€ ]:1

| ~ (F; —1)?
|7 = exptn; (F — 1) (1 - "J(JT))\ <Ce P <e (17)

Using the the formula of inversion, we have

‘W‘:‘HF}”—exp{;nj(Fj—I)KI—%;’%‘(Fj—l)z)‘
<C/T |W|/(|l)|d —|—HI——ZHJ(F 5 HQ(exp{ZnJ(F )} ;,)

-T
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= B1 + B».

As in previous part of the proof, by taking T’ = n’/?

, it easy to show that
B, <Cn™%.
We divide B; into two parts:

5 :/6 |W(l)|dr+/T |W(l)|dt
e T AT

Then we have

o
/ W@ dr < Enefcn <Cn 2,
€ |71 €

It only remains to estimate the second integral. For that we define
o~ o~ n] o~ 2
Aj=expln;(F; = D)(1 - L(F -1 )

Then

N N N
—~ 1 -~ 2
+ HAJ —exp{ZnJ(Fj —1)}(1 — EZ”J( = 1) )‘
From there we have
N N j—1 N
‘IIﬂhﬂjAﬁgimﬁ”_&‘ ﬁurllgcfmqma
j=1 j=1 j=1 =1  I=j+1
and
N =R n 1 N R )
T3-S o]0~ 135 (7 1))
j=1 j=1 j=1

431

(18)

(19)

(20)

21

(22)

(23)

(24)

<Jexp{Xon; & = |\ TT(1-F(F-1)) - (1—%;'%@—1)2)\

—Cni? = 2 7 2 —Cni? 242842428
<Ce " § ning|Fj — 117 |Fy — 1] < Ce™ " § njnt| 0
J#k J#k
_ 2

Therefore, by collecting all estimates we obtain (5).

(25)
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REZIUME
V. C‘ekanaviéius, A. Elijio. Svertiniy sumu, tenkinanciy Kramerio salyga, iverciai is virsaus

Tarkime, kad S = w;S; + w2S2 + ... + wySy. Cia S; — suma nepriklausomu vienodai pasiskirs¢iusiy
atsitiktiniy dydZiy, tenkinanciy Kramerio salyga; w; — svoris. [verciai i§ virSaus gauti sudétinéms Puasono
aproksimacijoms.



