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On Runge–Kutta-type methods for solving
multidimensional stochastic differential equations
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We consider a six-dimensional Stratonovich stochastic differential equation of the
form

Xi(t) = xi +
∫ t

0
fi(X(t))dt +

6∑
j=1

∫ t

0
gij(X(t)) ◦ dBj(t), t ∈ [0,T ], i = 1, . . . ,6,

or, in matrix notation,

X(t) = x +
∫ t

0
f (X(t))dt +

∫ t

0
g(X(t))dB(t), t ∈ [0,T ], (1)

where B is a six-dimensional Brownian motion, and fi : R
6 → R, gij : R

6 → R, i, j =
1,2, . . . ,6.

A family of stochastic processes {Xh, h > 0} is called a second-order weak approx-
imation of the solution X (in the time interval [0,T ]) if, for all t ∈ [0,T ],

Eϕ(Xh(t)) − Eϕ(X(t)) = O(h2), h → 0.

for a ‘rather wide’ class of functions ϕ: R
6 → R (see [1], [2]).

Similarly to [2], [4], [5], we consider Runge–Kutta-type approximations

Xh(0) = x, Xh(tk+1) = A
(
Xh(tk),h,�Bk

)
, k = 0,1, . . . ,N,

where tk = tk(h) = kh, �Bk = B(tk+1) − B(tk), and the function A: R
6 × [0,T ] ×

R
6 → R

6 is of the form

A(x, s,b) := x +
3∑

i=0

qiFis +
3∑

i=0

riGib, (2)

where

F0 = f (x), G0 = g(x + α00F0s),

F1 = f (x + α10F0s + β10G0b), G1 = g(x + α10F0s + β10G0b),

F2 = f
(
x + (α20F0 + α21F1)s + (β20G0 + β21G1)b

)
,
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G2 = g
(
x + (α20F0 + α21F1)s + (β20G0 + β21G1)b

)
,

F3 = f
(
x + (α30F0 + α31F1 + α32F2)s + (β30G0 + β31G1 + β32G2)b

)
,

G3 = g
(
x + (α30F0 + α31F1 + α32F2)s + (β30G0 + β31G1 + β32G2)b

)
. (3)

In [6], we derived equations for the parameters of the approximation of order two (in
the weak sense) and found ‘nice’ examples of the coefficients for a two-dimensional
SDE with the diffusion matrix of the form

g(x1, x2) =
(

C 0
0 g(x1, x2)

)
. (4)

In the multidimensional case, such a derivation seems to be rather difficult. There-
fore, here we try another approach. We take the parameters of the two-dimensional and
directly check that they are suitable in the six-dimensional analogue of the diffusion
matrix (4). Precisely, we consider six-dimensional SDEs with diffusion matrices of the
form

g(x) =




c1 c2 c3 0 0 0
c4 c5 c6 0 0 0
c7 c8 c9 0 0 0
0 0 0 g1(x1, x2, x3) 0 0
0 0 0 0 g2(x1, x2, x3) 0
0 0 0 0 0 g3(x1, x2, x3)




. (5)

In the two-dimensional case, we have obtained the following values for the param-
eters qi , ri , αij , βij written in the Butcher-type array [6]:
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We verify that the sufficient conditions [2], [3] for the second-order accuracy of a
weak approximation are satisfied by the corresponding Runge–Kutta approximation.
Using MAPLE, we first check conditions (F1A)i , (F2A)ij , i, j = 1, . . . ,6.
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On the left-hand and right-hand sides of conditions (F1A)i , we respectively have
(

∂

∂s
Ai + 1

2

∑
p

∂2

∂b2
p

Ai

)
(x̄) = fi(x1, x2, x3, x4, x5, x6)

and (
fi + 1

2

∑
l,j

glj

∂gij

∂xl

)
(x) = fi(x1, x2, x3, x4, x5, x6).

Next, we consider conditions (F2A)ij . For example, on the left-hanf side of
(F2A)11(x), we have

∑
p

∂

∂bp

A1
∂

∂bp

A1(x̄) = c2
1 + c2

2 + c2
3,

and, on the right-hand side, we have

a11(x) = c2
1 + c2

2 + c2
3.

Further, on the left-hand side of (F2A)44(x), we have

∑
p

∂

∂bp

A1
∂

∂bp

A1(x̄) = g2
1(x1, x2, x3),

and, on the right-hand side, we have

a44(x) = g2
1(x1, x2, x3).

Similarly, one can check the remaining conditions (F2A)ij (x), i, j = 1, . . . ,6. Thus,
our Runge–Kutta approximation satisfies the first-order accuracy conditions.

Now we consider conditions (S1A)i(x). For example, on the left-hand side of
(S1A)1(x), we have

(
∂2

∂s2
A1 +

∑
p

∂3

∂b2
p∂s

A1 + 1
4

∑
p,q

∂4

∂b2
p∂b2

q

A1

)
(x̄)

= f1(x1, x2, x3, x4, x5, x6)
∂

∂x1
f1(x1, x2, x3, x4, x5, x6)

+ f2(x1, x2, x3, x4, x5, x6)
∂

∂x2
f1(x1, x2, x3, x4, x5, x6)

+ f3(x1, x2, x3, x4, x5, x6)
∂

∂x3
f1(x1, x2, x3, x4, x5, x6)

+ f4(x1, x2, x3, x4, x5, x6)
∂

∂x4
f1(x1, x2, x3, x4, x5, x6)
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+ f5(x1, x2, x3, x4, x5, x6)
∂

∂x5
f1(x1, x2, x3, x4, x5, x6)

+ f6(x1, x2, x3, x4, x5, x6)
∂

∂x6
f1(x1, x2, x3, x4, x5, x6)

+ 1/2(c2
1 + c2

2 + c2
3)

∂2

∂x2
1

f1(x1, x2, x3, x4, x5, x6)

+ (c1c4 + c2c5 + c3c6)
∂2

∂x1∂x2
f1(x1, x2, x3, x4, x5, x6)

+ (c1c7 + c2c8 + c3c9)
∂2

∂x1∂x3
f1(x1, x2, x3, x4, x5, x6)

+ 1/2(c2
4 + c2

5 + c2
6)

∂2

∂x2
2

f1(x1, x2, x3, x4, x5, x6)

+ (c4c7 + c5c8 + c6c9)
∂2

∂x2∂x3
f1(x1, x2, x3, x4, x5, x6)

+ 1/2(c2
7 + c2

8 + c2
9)

∂2

∂x2
3

f1(x1, x2, x3, x4, x5, x6)

+ 1/2g1(x1, x2, x3)
2 ∂2

∂x2
4

f1(x1, x2, x3, x4, x5, x6)

+ 1/2g2(x1, x2, x3)
2 ∂2

∂x2
5

f1(x1, x2, x3, x4, x5, x6)

+ 1/2g3(x1, x2, x3)
2 ∂2

∂x2
6

f1(x1, x2, x3, x4, x5, x6),

and we have the same expression on the right-hand side.
Similarly, we check the remaining conditions (S1A)i(x), (S2A)ij (x), and

(S3A)ijk(x) for the second-order accuracy.
Thus, we have constructed a second-order Runge–Kutta approximation for the

case (5).

Applications. In physics, the stochastic particle equations of motion that follow
from the Fokker–Planck equation are

r ′ = v,

v′ = F
m

− νv + √
D�(t),
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where F is the force including both the external force and the self-generated mean
field space charge force, m is the mass of particle, ν is the friction coefficient, D is the
diffusion coefficient, and �(t) is Gaussian white noise.

In the case of three dimensions, the dynamical equations then take the general form

ẋ1 = F1(x1, x2, x3, x4, x5, x6) + σ11(x2, x4, x6)ξ1(t),

ẋ2 = F2(x1),

ẋ3 = F3(x1, x2, x3, x4, x5, x6) + σ33(x2, x4, x6)ξ3(t),

ẋ4 = F4(x3),

ẋ5 = F5(x1, x2, x3, x4, x5, x6) + σ55(x2, x4, x6)ξ5(t),

ẋ6 = F6(x5). (6)

In Eqs. 6, the indices are single-particle phase-space coordinate indices; the convention
used here is that the odd indices correspond to momenta, and the even indices to the
spatial coordinate. In the dynamical equations for the momenta, the first term on the
right-hand side is a systematic drift term which includes the effects due to external
forces and damping. The second term is stochastic in nature and describes a noise
force which, in general, is a function of position.

For solution of such dynamical equations, the constructed Runge–Kutta approxi-
mation is an effective numerical method.
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REZIUMĖ

J. Navikas. Stochastini ↪u diferencialini ↪u lygči ↪u sprendimo Rungės–Kuto metodai

Daugiamačiu atveju antrosios eilės silpnosioms Rungės–Kuto aproksimacijas stochastinėms diferenciali-
nėms lygtims (SDL) konstruoti yra gana sudėtinga. Šiame straipsnelyje pabandyta apeiti šiuos sunkumus
tokiu būdu: ↪irodyta, kad šešiamatės SDL aproksimacijai tinka dvimatės SDL Rungės–Kuto aproksimacijos
koeficientai.


