On joint universality for general Dirichlet series

Jonas GENYS (ŠU)

e-mail: mat.kat@fm.su.lt

Let $s = \sigma + it$ be a complex variable, and let $\mathbb C$ denote the complex plane. The series

$$f(s) = \sum_{m=1}^{\infty} a_m e^{-\lambda_m s}, \quad \sigma > \sigma_a,$$

is called the general Dirichlet series. Here $a_m \in \mathbb{C}$ and $\{\lambda_m\}$ is an increasing sequence of positive numbers, $\lim_{m \to \infty} \lambda_m = +\infty$. Let

$$\nu_T(\ldots) = \frac{1}{T} \operatorname{meas} \{ \tau \in [0, T] : \ldots \},$$

where T>0, meas{A} denotes the Lebesgue measure of the set A, and in place of dots a condition satisfied by τ is to be written. Note that the problem of the universality for zeta-functions comes back to S.M. Voronin. In 1975 he proved [6] that any analytic function can be approximated by translations $\zeta(s+i\tau)$ of the Riemann zeta-function $\zeta(s)$. The Voronin theorem states [2] that if K is a compact subset of the strip $\{s \in \mathbb{C}: \frac{1}{2} < \sigma < 1\}$ with connected complement, and g(s) is a non-vanishing continuous function on K which is analytic in the interior of K, then, for every $\varepsilon > 0$,

$$\liminf_{T\to\infty} \nu_T \left(\sup_{s\in K} |\zeta(s+i\tau) - g(s)| < \varepsilon \right) > 0.$$

For the universality of general Dirichlet series theorem we need some conditions.

We suppose that the system of exponents $\{\lambda_m\}$ is linearly independent over the field of rational numbers, the function f(s) is meromorphically continuable to the halfplane $\sigma > \sigma_1$ with some $\sigma_1 < \sigma_a$ and it is analytic in the strip

$$D = \{ s \in \mathbb{C} : \sigma_1 < \sigma < \sigma_a \}.$$

We also require that, for $\sigma > \sigma_1$, the estimates

$$f(\sigma + it) = B|t|^{\alpha}, \quad |t| \geqslant t_0, \ \alpha > 0,$$

and

$$\int_{-T}^{T} |f(\sigma + it)|^2 dt = BT, \quad T \to \infty,$$

should be satisfied. Here and in the sequel B denotes a quantity bounded by a constant. Denote, for x > 0,

$$r(x) = \sum_{\lambda_m \leqslant x} 1,$$

and let $c_m = a_m e^{-\lambda_m \sigma_a}$. Suppose that, for some $\theta > 0$,

$$\sum_{\lambda_m \leqslant x} |c_m|^2 = \theta r(x) (1 + o(1))$$

as $x \to \infty$, $|c_m| \le d$ with some d > 0, and

$$r(x) = C_1 x^{\varkappa} + B,\tag{1}$$

where $\varkappa \geqslant 1$, $C_1 > 0$ and $|B| \leqslant C_2$. Finally, we assume that f(s) cannot be represented in the region $\sigma > \sigma_a$ by an Euler product over primes. Then we have the following statement [5].

THEOREM A. Suppose that the function f(s) satisfies all the conditions stated above. Let K be a compact subset of the strip D with connected complement, and let g(s) be a continuous function on K which is analytic in the interior of K. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \nu_T \left(\sup_{s \in K} \left| f(s + i\tau) - g(s) \right| < \varepsilon \right) > 0.$$

For simplicity, we will consider a collection of two functions, only. Let, for $\sigma > \sigma_{aj}$, the series

$$f_j(s) = \sum_{m=1}^{\infty} a_{mj} e^{-\lambda_m s}$$

converges absolutely, j=1,2. As above, suppose that $f_j(s)$ is meromorphically continuable to the half-plane $\sigma > \sigma_{1j}$ with some $\sigma_{1j} < \sigma_{aj}$, all poles being included in a compact set, it is analytic in the strip $\{s \in \mathbb{C}: \sigma_{1j} < \sigma < \sigma_{aj}\}$, and that $f_j(s)$ cannot be represented by an Euler product over primes in the region $\sigma > \sigma_{aj}$, j=1,2. Moreover, let, for $\sigma > \sigma_{1j}$, the estimates

$$f_i(\sigma + it) = B|t|^{\alpha_i}, \quad |t| \geqslant t_0, \ \alpha_i > 0, \tag{2}$$

and

$$\int_{-T}^{T} |f_j(\sigma + it)|^2 dt = BT, \quad T \to \infty,$$
(3)

be satisfied. Let $c_{mj} = a_{mj}e^{-\lambda_m\sigma_{aj}}$, j = 1, 2. Then we suppose that there exist $r \ge 2$ sets \mathbb{N}_k , $\mathbb{N}_{k_1} \cap \mathbb{N}_{k_2} = \emptyset$, for $k_1 \ne k_2$, $\mathbb{N} = \bigcup_{k=1}^r \mathbb{N}_k$, such that $c_{mj} = b_{kj}$ for $m \in \mathbb{N}_k$,

k = 1, ..., r, j = 1, 2. Let

$$L = \begin{pmatrix} b_{11} & b_{12} \\ \dots & \dots \\ b_{r1} & b_{r2} \end{pmatrix},$$

and we assume that the sequence $\{\lambda_m\}$ satisfies (1), and that

$$\sum_{\lambda_m \leqslant x, \ m \in \mathbb{N}_k} 1 = \varkappa_k r(x) (1 + o(1)), \quad x \to \infty, \tag{4}$$

with positive \varkappa_k , k = 1, ..., r. Then in [3] the following assertion was obtained.

THEOREM B. Suppose that conditions (1)–(4) are satisfied, the set $\{\log 2\}\bigcup_{m=1}^{\infty} \{\lambda_m\}$ is linearly independent over the field of rational numbers, and that $\operatorname{rank}(L) = 2$. Let K_j be a compact subset of the strip D_j with connected complement, and let $g_j(s)$ be a continuous function on K_j which is analytic in the interior of K_j , j=1,2. There, for every $\varepsilon > 0$,

$$\liminf_{T\to\infty} \nu_T \left(\sup_{1\leqslant j<2} \sup_{s\in K_j} \left| f_j(s+i\tau) - g_j(s) \right| < \varepsilon \right) > 0.$$

The requirement that the set $\{\log 2\} \bigcup \bigcup_{m=1}^{\infty} \{\lambda_m\}$ should be linearly independent over the field of rational numbers is not natural. It turns out that the number $\log 2$ can be removed from the later set. The aim of this paper is the following statement.

THEOREM. Suppose that conditions (1)–(4) are satisfied, the system $\{\lambda_m\}$ is linearly independent over the field of rational numbers, and that $\operatorname{rank}(L) = 2$. Then the assertion of Theorem B is true.

Let G be a region on the complex plane. Denote by H(G) the space of analytic on G functions equipped with the topology of uniform convergence on compacta. Let, for N > 0,

$$D_{j,N} = \{ s \in \mathbb{C} : \sigma_{1j} < \sigma < \sigma_{aj}, |t| < N \}, \quad j = 1, 2,$$

and

$$H_{2,N} = H_2(D_{1,N}, D_{2,N}) = H(D_{1,N}) \times H(D_{2,N}).$$

Denote by $\mathcal{B}(S)$ the class of Borel sets of the space S. Let

$$P_T(A) = \nu_T (f_1(s_1 + i\tau), f_2(s_2 + i\tau) \in A), \quad A \in \mathcal{B}(H_{2,N}),$$

and let γ be the unit circle on the complex plane, and

$$\Omega = \prod_{m=1}^{\infty} \gamma_m,$$

54 J. Genys

where $\gamma_m = \gamma$ for all $m \in \mathbb{N}$. Since Ω is a compact topological Abelian group, the probability Haar measure m_H on $(\Omega, \mathcal{B}(\Omega))$ exists. Denote by $\omega(m)$ the projection of $\omega \in \Omega$ onto the coordinate space γ_m .

On the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$ define an $H_{2,N}$ -valued random element

$$f(s_1, s_2; \omega) = (f_1(s_1, \omega), f_2(s_2, \omega)),$$

where

$$f_j(s_j, \omega) = \sum_{m=1}^{\infty} a_{mj} \omega(m) e^{-\lambda_m s}, \quad s_j \in D_{j,N}, \ j = 1, 2.$$

Let P_f stand for the distribution of the random element $f(s_1, s_2; \omega)$, i.e.,

$$P_f(A) = m_H(\omega \in \Omega: f(s_1, s_2; \omega) \in A), \quad A \in \mathcal{B}(H_{2,N}).$$

LEMMA 1. The probability measure P_T converges weakly to the measure P_f as $T \to \infty$.

Proof is based on a limit theorem from [1].

We consider the support S of the measure P_f in Lemma 1. The support S is the minimal closed set of $H_{2,N}$ such that $P_f(S_{P_f}) = 1$.

LEMMA 2. The support of the random element $f(s_1, s_2; \omega)$ is the whole of $H_{2,N}$.

Proof uses lemmas from [2] and [4]. A full proof of the lemma is sufficiently long, it will be given elsewhere.

Proof of the theorem. First we suppose that the functions $g_1(s)$, $g_2(s)$ have analytical continuation to the regions $D_{1,N}$, $D_{2,N}$, respectively. Let G consist of $(y_1, y_2) \in H_{2,N}$ satisfying the inequality

$$\sup_{1 \leqslant j \leqslant 2} \sup_{s \in K_j} \left| y_j(s) - g_j(s) \right| < \frac{\varepsilon}{4}.$$

Clearly, the set G is open. Therefore, properties of the weak convergence of probability measures, Lemmas 1 and 2 yield

$$\liminf_{T\to\infty} \nu_T \bigg(\sup_{1\leqslant j\leqslant 2} \sup_{s\in K_j} \Big| f_j(s+i\tau) - g_j(s) \Big| < \frac{\varepsilon}{4} \bigg) \geqslant P_f(G) > 0.$$

Now let the functions $g_1(s)$, $g_2(s)$ and the sets K_1 , K_2 satisfy the conditions of the theorem. Then by the Mergelyan theorem, see, for exmaple, [7], there exist polynomials $p_1(s)$, $p_2(s)$ such that

$$\sup_{1 \le j \le 2} \sup_{s \in K_j} \left| p_j(s) - g_j(s) \right| < \frac{\varepsilon}{2}. \tag{5}$$

By the begining of the proof

$$\liminf_{T \to \infty} \nu_T \left(\sup_{1 \le j \le 2s \in K_j} \left| f_j(s + i\tau) - p_j(s) \right| < \frac{\varepsilon}{2} \right) > 0.$$
 (6)

In virtue of (5)

$$\begin{split} & \Big\{ \tau \colon \sup_{1 \leqslant j \leqslant 2s \in K_j} \sup_{s \in K_j} \left| f_j(s+i\tau) - p_j(s) \right| < \frac{\varepsilon}{2} \Big\} \\ & \subseteq \Big\{ \tau \colon \sup_{1 \leqslant j \leqslant 2s \in K_j} \sup_{s \in K_j} \left| f_j(s+i\tau) - g_j(s) \right| < \varepsilon \Big\}. \end{split}$$

This together with (6) shows that

$$\liminf_{T\to\infty} \nu_T \left(\sup_{1\leqslant j\leqslant 2} \sup_{s\in K_j} \left| f_j(s+i\tau) - g_j(s) \right| < \varepsilon \right) > 0.$$

The theorem is proved.

References

- 1. J. Genys, A. Laurinčikas, On joint limit theorem for general Dirichlet series, *Nonlinear Analysis: Modeling and Control*, **8**(2), 27–39 (2003).
- 2. A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht, London (1996).
- A. Laurinčikas, The joint universality for general Dirichlet series, Annales Univ. Sci. Budapest, Sect. Comp., 22, 235-251 (2003).
- 4. A. Laurinčikas, K. Matsumoto, The joint universality of zeta-function attached to certain cusp forms, *Proc. Sci. Seminar Faculty of Phys. and Math.*, Šiauliai University, **5**, 57–75 (2002).
- A. Laurinčikas, N. Schwarz, J. Steuding, The universality of general Dirichlet series, Analysis, 23, 13-26 (2003).
- S.M. Voronin, Theorem on the "universality" of the Riemann zeta-function, *Izv. Akad. Nauk SSSR*, ser. matem., 39(2), 475–486 (1975) (in Russian).
- J.L. Walsch, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Coll. Publ., 20 (1960).

REZIUMĖ

J. Genys. Apie bendrųjų Dirichle eilučių jungtinį universalumą

Patikslinta viena bendujų Dirichle eilučių jungtinė universalumo teorema.