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A weighted discrete limit theorem on the complex plane
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Let N and C denote the sets of positive integers and complex numbers, respectively.
For g(m), f(j,m) € Nand af,{) eC,meN, j=1,..., g(m), define the polynomials

g(m) ) .
AnX) =[] (1 —ax7Gm).
j=1

Let s =0 + it be a complex variable, and let p,, denote the mth prime number. The
Matsumoto zeta-function ¢(s) was introduced and studied in [6], and is defined by

o) =[] An' (")
m=1

Assume the conditions
gm) <cpl, lay) 1< pb (1)

with a positive constant ¢ and non-negative constants « and . Under the condition
(1) the product in the definition of ¢(s) converges absolutely for o >« + 4+ 1 and
defines an analytic function without zeros.

K. Matsumoto and A. Laurinéikas proved limit theorems for the function ¢(s).
We obtained in [2]-[4] discrete limit theorems for ¢(s). Let, for N e N, un(...) =
(N +1D7%0 <m < N: ..), where in place of dots a condition satisfied by m is
to be written. Denote by B(S) the class of Borel sets of the space S. In [2]-[4] we
considered the weak convergence of probability measures

1
un(p(o +imh) € A), AeB(C), O'>Ol+ﬂ+§,

un(p(s +imh) € A), AeBHDy), Di={seC.o>a+8+1}, (2
wn(@(s +imh) € A), A e BM(Dy)), D2={s€C:a>a+ﬂ+%}.

Here H(D;) and M (D) denote the spaces of analytic and meromorphic functions,
respectively. In the case of the first and third measures in (2) it was assumed that
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the function ¢(s) is meromorphically contmuable to Dy, all poles in this region are
included in a compact set, and, foro > o + 8 + 2, the estimates

@(o +it)=Blt|°, |t| =1, ¢c>0, (3)

and
T
f lo(o +ir)|*dt = BT, T — oo,
0

are valid. Here & > 0 is a fixed number such that exp { 2t k} is irrational for all integers
k # 0, and B denotes a quantity bounded by a constant.

It is possible to generalize the last results and to obtain weighted discrete limit
theorems for the function ¢(s). Let w(x) be a real function of bounded variation on
[Ny, 00), Ny e N, such that U = U (N, w) = ZnILNo w(m) — +00 as N - 00, and

letwy(...) =7 Z‘m =N, w(m), where in place of dots a condition satisfied by m is to
be written. The aim of this note is to obtain the weak convergence as N — 0o of the
probability measure Py (A) = vy (¢p(o +imh) € A), Ae B(C),oc >a+ 8+ % Note
that if the function w(x) is non-increasing, then in [5] it was proved that the weak
convergence of the first measure in (2) implies that of Py.

Let, foro > a + B8 + %, and real 7,

T+t 2 .
/ wt —1)|elo +it)|"dt=B(1+r))?, < >0. 4)

THEOREM 1. Suppose that the function ¢(s) satisfies conditions (1), (3), (4), and
h > 0 is a fixed number such that exp {22’—"} is irrational for all integers k # 0. Then on
(C, B(C)) there exists a probability measure P such that the measure Py converges
weakly to P as N — oo.

We begin with a limit theorem for Dirichlet polynomials. For o0 > o + 8 + 1, the
function ¢(s) can be written in the form ¢(s) = Ef;o:l li%’l. Let, forn e N, p,(s) =

b
Yony 2

LEMMA 2. The probability measure vy (pn(0 + imh) € A), A € B(C), converges
weakly to some measure on (C, B(C)) as N — oo.

Proof. Let py,..., pr be prime numbers which divide n!. Define the probability
measure Qpy(A) = vN((p—'hm, ey pr —ihmy e A), A € B(S2,), where Q, = ]_[;-=1 Y
vi=v=1{eC: |s|= 1} J=1,...,r. We will prove that the measure Qy con-
verges weakly to the Haar measure m, g on (2, B(R2,)). The Fourier transform of
gnk, ..., k), k1,..., k- € Z, of the measure Qy is

N r
1 .
gN(kl,...,kr)=—[j E w(m)exp {tmh E kj]ogpj}.

m=Np j=1
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Clearly, gn(0,...,0) = 1. If (k1,..., k) # (0,...,0), then the properties of & show
that

-1
Z exp {imhikjlogpj} = (ih ikjlogpj)

Nosm<U j=1 j=1
r r
x (exp {ih[U]ij logpj} — exp {ihNOij logpj}> =B.
j=1 j=1
Hence, summing by parts, we find that in this case
N r
w(N) .
g,k === CXP{lthkjlogm}
m=Ng j=1
1 N d
_.(_]_/I‘VO Z exp {imh ijlogpj}dw(u)
No<m<U j=1
B .B [V
==+ — |dw(u)] —> 0as N — oo.
U Uy,

Consequently,

' 1 (ke k) =(0,...,0),
A}T’oog”(kl"“’k’)‘{o if (kp, ..., k) # (0, ..., 0).

This shows that the measure Q y converges weakly tom, g as N — 0o. Letu: Q, — C
be given by the formula

,
b(m)
UL, X)) = Y e (X ) €
m I i X
m=1 Pj"m r
Since p, (o +imh) = u(pl_i'"h, e Dy imhy "and the function u is continuous, hence

we obtain that the measure of the lemma converges weakly to m,yu~! as N — o0.
Without loss of generality we can suppose that the function ¢(s) is analytic in D,.

Really, since all poles are included in a compact set, we can find N € N such that,

for m > Ny, mh > max; Jg;, where g; are possible poles of the function ¢(s). Let

U= ZZ:NI w(m). Then, clearly, U;/U — 1 as N — co. Hence we have

1 N 1 N 1 N;
T g w(m) = T ,,;,: w(m) + T ,,,=ZN w(m)
¢(a+iml?)e.4 (p(o+imhl)eA w(a+iml?)EA
Ul N 1 N
= m "Z;‘l w(m)+o(l) = U_l M=ZNI w(m) + o(1)

¢(c+imh)eA @(o+imh)eA
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uniformly in A € B(C) as N — oo. Therefore, instead of the measure Py we can
consider the measure

N

1
1 m=N{
@(o+imh)eA

Let, for o7 > %
o0
b(m) m\o°1
AOED P exp{—(;l-) }

m=1

Then the last series converges absolutely foro > o + 8 + %
LEMMA 3. Leto >a+ B8+ % Then on (C, B(C)) there exists a probability mea-
sure P, such that the probability measure
Onn(A) =vn(pn(o +imh) € A), AeB(C),

converges weakly to P, as N — oo.
Proof. Proof of the lemma uses Lemma 2 and is similar to that of Lemma 3.1 of [2].

LEMMA 4. Leto >a+ B + %— Then

N
1
lim limsup — } _ w(m)|@(o +imh) = gu(c +imh)| =0.

n—>00 N_ .~ N

Proof. We apply the condition (4) and arguments of the proof of Lemma 4.3 of [2].

Proof of Theorem 1. By Lemma 3 the probability measure Q , converges weakly
to P, as N — 0o. We will prove that the family of probability measures {P,} is tight.

Let ny be defined on a certain probability space (2, B($2), P) and have the distri-
bution

w(k)
P(nn = hk) NNy 0,--s N
Define Xy n,(0) = ¢, (0 +iny). Then, clearly,
1 N
P(Xyn(@)€A)=7 ) wim), AeB(O),
m=Nyp
and thus
D
XN,n —> Xn, (5)

N—oo
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where X, is a complex-valued random element with the distribution P,. Since the
series for ¢, (s) is absolutely convergent for o > +a + 8 + %—, we have

N
1
suplimsupa- Z w(m)l(p,,(a+imh)| < A <o0o.

nz>1l N—oo m=Np

Now, taking M = fa‘-, we find that

N
1
limsupP(|Xn | > M) <limsup —— > w(m)|pa(o +imh)| <e.
N—oo N—oo MU m=No

. D
Since | Xy n| —> |Xy|, hence we find that
" N—>oo

P(1X.| > M) <e.
Hence
]P’(X,, € H,;) >1-—¢ (6)

. foralln e N, where H, = {s € C: |s| < M}. Clearly, H, is a compact set, and by (6)
P,(H;) > 1 —&. This means that the family { P,,} is tight, and therefore by Prokhorov’s
theorem it is relatively compact.

Let Yy (o) = ¢(o +inn). Then by Lemma 4, for every € > 0,

lim 1imsup]P>(|XN,n(a) —Yn@©)| > g)
n—>oo N—0o
1 N
=nli>nololi1\r,n_>s;lopﬁ ,,; w(m)
an’,,<a)—Y;'i,(a>|>e
1 N
< Jim Timsup — >~ wm)| Xy (o) = Yn(0)| =0. (7

n—->oo N—oo £ m=NO

From the relative compactness of { P,} it follows the existence of n1 — 00 such that
P,, converges weakly to some measure P as nj — 00, or

This, (5), (7) and Theorem 4.2 of [1] shows that Yy N%o P. and the theorem is
proved.
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REZIUME

R. Kacinskaiteé. Diskreti ribiné teorema su svoriu kompleksinéje plokStumoje Matsumoto dzeta funkcijai

Straipsnyje jrodyta diskreti ribiné teorema su svoriu silpno tikimybiniy maty konvergavimo prasme kom-
pleksingje plok§tumoje Matsumoto dzeta funkcijai.
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