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On zeta-functions of cusp forms

Antanas LAURINCIKAS (VU, SU)"

e-mail: antanas.laurincikas@maf.vu.lt

This note is a continuation of [2]. Our aim is to prove a discrete limit theorem on the
complex plane C for zeta-functions of certain cusp forms with step of the progression
h satisfying conditions discussed in [2].

More precisely, let F(z) be a holomorphic cusp form of weight « which is a nor-
malized eigenform. Suppose that the function F(z) has the following Fourier series
expansion

F(z) = Z c(m)er™m (1) =1.
m=1

We consider the zeta-function ¢(s, F), s = o + it, attached to F(z):

(p(S,F)=ZC(m), a>K+l.

mS 2
m=1
It is well known that the function ¢(s, F') is an entire function.

Suppose that & > 0 is such that exp{z’,:—k} is rational for some integer k 7 0. Denote

by ko the smallest of such k, and let exp{%ﬁ} = %‘)1, mg,ng € N, (mg, ng) = 1.

Let, as usual,
Q= 1—[ Yps

where y,, is the unit circle y on the comglex plane for each prime p. 2 is a com-
pact topological group. Denote 2, = {w € Q: w(mg) = w(ng)}. Then §2;, is a closed
subgroup of €2, and therefore is a compact topological group. Denote by w(p) the
projection of w € £ to the coordinate space y,, and let, for m € N,

wm)= [] «*p).

p|im
Let B(S) stand for the class of Borel sets of the space S, and denote by myp the
probability Haar measure on (2, B(€2)). Then in [2] it was proved that, for o > «/2,

o0

(o, wp, F) =

m=1

c(m)wp(m)
mU

*Partially supported by Lithuanian Foundation of Studies and Science.
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is acomplex-valued random variable defined on the probability space (2, B(2p),mpu ).

THEOREM 1. Suppose that the number h satisfies the above conditions, and o > 5
Then the probability measure

1
Py(A) = m#(o <m<N: g(o+imh, F)e A), AeB(C),

converges weakly to the distribution of the random variable ¢(o, wy,, F) as N — oo.

First the condition on the number 4 is used in a limit theorem for Dirichlet polyno-
mial. Let

o0
c(m)
pn(t) = Z — "> max (g, ng).

m=1
Denote by p1, ..., p, distinct prime numbers which divide n!. Let

r
Q= ]_[ Ypj»
j=1

where yp;, =y for j=1,...,r,and
Qpy = {w € 2, w(mg) = a)(no)}.
Consider on (£2,, B(2,)) a probability measure

1
Oun(A )=N—+1#(0 m< N (pi™h, .., pimhy e A).

LEMMA 1. The probability measure Qun converges to the Haar measure my, on
(Qhr ’ B(Qhr))

Proof. Consider the Fourier transform

anthr, k)= [k agun,

ki,.... k) €Z", (x1,...,x,) € Q,, of the measure Q5. Without loss of generality

we can suppose that the prime numbers pl, ..., p1 occur in the factorization of mq and
ng, and let «; be the exponent of p; in 22, i =1, ...,l. Then we have that
hk;
ki,...,k im ex zmh kjlo
... k) Nﬂzojnl N+1Z ol z ep))
1, ifky=kay,....kk=ka,kiz1=...=k =0,
=1 | l-expli(N+DhY)_ kjlogp;} , (1)
N1~ T—explih Z§=1ka ogp;] otherwise.
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Since the logarithms of prime numbers are linearly independent over the field of
rational numbers,

.
> kjlogp;#0 for (ki,...,k)#(0,...,0).

Jj=1
By the definition of kg

Mo 7
=—=p/'...p,
therefore the rational numbers

2k
p’f' ...pF and exp{L}

coincide if and only if (ky,...,k,) = (may,...,ma,0,...,0). Hence

4 2rck
ij logp; # e forany k € Z,

j=1
for (k1,....ki, kiy1, ..., k) # (may,...,ma,0,...,0). Consequently, (1) shows that

if (ky,... ki kigr, ... k) = (kay, ..., ko, 0,...,0),

. 1
ki, ..., :[ ’ _
Nh—r»%ogN( ! ) 0 otherwise.

Hence the lemma follows.

Let g € Q4 and

) =) Sk,
m=1

LEMMA 2. The probability measures

1
——#(0<m < N: p,(mh) € A), AeB(),
and N+l

5 1#(0 <m<N: py(mh,g) € A), AeBQC),
both converge weak_llgl to the same measure as N — 00.

Proof. We use Lemma 1 and the same method as in [1].
Now we define, for o] > %,

)= 3 s exp{ - (2 }
m=1

and
o0

won )= L o] - ()7

m=1

It is not difficult to see that the later two series converge absolutely for o > /2.
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LEMMA 3. Suppose that o > 5. Then there exists a probability measure P, on

(C, B(C)) such that both the measures

—1—#(O<m<N:<p(a+imh;F)eA), A e BC),
N+1
and
1
N—H#(ogm <N: (o +imh,wp; F) € A), AeB(Q),

converge weakly to P, as N — oo.

Proof. The proof of the lemma uses Lemma 3 and is similar to that of Lemma 3.1
of [1].

Now we give a result of the ergodic theory. Let a, = {p~##: p is prime}. We define
a transformation fj, on @, by fr(wp) = apwp, wp € Q. Then f, is a measurable
measure preserving transformation on (2, B(21), mpg).

LEMMA 4. The transformation f, is ergodic.

Proof. The proof with minor changes coincides with that of Lemma 5.1 of [1].
Using Lemma 4 and the classical Birkhoff theorem, we obtain that, for o > 5,

N
3" o +imh,wp; F|* =O(N), N - oo,

m=0

for almost all wy, € 2. The estimate

N
> |¢(o +imh; F)|* =0(N), N — oo,

m=0

for o > 5 follows from the estimate [3]

T
/]go(a+it;F)|2=O(T), T — 0.
0

The last two mean-value estimates allow us to obtain the following statement.

LEMMA 5. Leto > g. Then

N

1

lim li imh; F) — imh; F)| =0
i, l,\l,n_,SgopN+1mZ=0l(p(a+’m ) = ¢n(o +imh; )|
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and

N
T 2l +imh,wp; F) — g, (o +imh,wy; F)| =0
m=0

lim li
nan;lo II\TIHSUP N

Sfor almost all wy, € Q.

Proof of Theorem 1. First, using Lemmas 3 and 5, by traditional way we show that
there exists a probability measure P on (C, B(C)) such that the probability measures
Py and

1
N—_H#(O<m N: ¢(o +imh, a);,,F)eA) A e B,

both converge weakly to P as N — oo. It remains to check that P is the distribution
of the random variable ¢ (o, wy,; F).

Let A € B(C) be a continuity set of the measure P. Then by the above remark, for
wh € Qp,

Nli_r)noom#(OémgN: (o +imh,wh;F)eA)=P(A). 2)
Now we fix the set A and define the random variable 1 on (2, B(2,), mpy) by the
formula

_ )1, ifg(o,wn; F) € A,
n(wn) = {0, if g (o, wn; F) & A.

Then
E77=/Q ﬂdth=th(wh€th (0, wp; F)) )
h

is the distribution of the random variable ¢(o, wy; F). However, by Lemma 4 and the
Birkhoff theorem

N
lim —— " =E 4
Jim n(f4" (@) = En )
m=0
for almost all wj, € 2. On the other hand, the definition of n and f, shows that

N

1 1 .
N—+1m§ n(fit@n) = G #O<m < N: 9o +imh, wy; F) € A).

This together with (3) and (4) yields

1 .
N]l_l;noo N——i-l#(o m < N: 9(o +imh, wy; F) € A) = Py(A)
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for almost all w, € 2, where P, is the distribution of the random element
¢(o, wy; F). Hence and from (2) we have that

P(A) = P,(A)

for all continuity sets A of the measure P. From this, clearly, the theorem follows.
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REZIUME

A. Laurincikas. Apie paraboliniy formy dzeta funkcija.{

Irodoma diskreti ribiné teorema komzerleksinéje plokStumoje paraboliniy formy dzeta funkcijoms, kai pro-
gresijos Zingsnis A turi savybe: exp{ T"} yra racionalus kuriems nors k # 0.
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