On zeta-functions of cusp forms

Antanas LAURINČIKAS (VU, ŠU)*

e-mail: antanas.laurincikas@maf.vu.lt

This note is a continuation of [2]. Our aim is to prove a discrete limit theorem on the complex plane \mathbb{C} for zeta-functions of certain cusp forms with step of the progression h satisfying conditions discussed in [2].

More precisely, let F(z) be a holomorphic cusp form of weight κ which is a normalized eigenform. Suppose that the function F(z) has the following Fourier series expansion

$$F(z) = \sum_{m=1}^{\infty} c(m)e^{2\pi i m z}, \quad c(1) = 1.$$

We consider the zeta-function $\varphi(s, F)$, $s = \sigma + it$, attached to F(z):

$$\varphi(s, F) = \sum_{m=1}^{\infty} \frac{c(m)}{m^s}, \quad \sigma > \frac{\kappa + 1}{2}.$$

It is well known that the function $\varphi(s, F)$ is an entire function.

Suppose that h > 0 is such that $\exp\{\frac{2\pi k}{h}\}$ is rational for some integer $k \neq 0$. Denote by k_0 the smallest of such k, and let $\exp\{\frac{2\pi k_0}{h}\} = \frac{m_0}{n_0}$, $m_0, n_0 \in \mathbb{N}$, $(m_0, n_0) = 1$. Let, as usual,

$$\Omega = \prod \gamma_p,$$

where γ_p is the unit circle γ on the complex plane for each prime p. Ω is a compact topological group. Denote $\Omega_h = \{\omega \in \Omega \colon \omega(m_0) = \omega(n_0)\}$. Then Ω_h is a closed subgroup of Ω , and therefore is a compact topological group. Denote by $\omega(p)$ the projection of $\omega \in \Omega$ to the coordinate space γ_p , and let, for $m \in \mathbb{N}$,

$$\omega(m) = \prod_{p^{\alpha}||m} \omega^{\alpha}(p).$$

Let $\mathcal{B}(S)$ stand for the class of Borel sets of the space S, and denote by m_{hH} the probability Haar measure on $(\Omega_h, \mathcal{B}(\Omega_h))$. Then in [2] it was proved that, for $\sigma > \kappa/2$,

$$\varphi(\sigma, \omega_h, F) = \sum_{m=1}^{\infty} \frac{c(m)\omega_h(m)}{m^{\sigma}}$$

^{*}Partially supported by Lithuanian Foundation of Studies and Science.

is a complex-valued random variable defined on the probability space $(\Omega_h, \mathcal{B}(\Omega_h), m_{hH})$.

THEOREM 1. Suppose that the number h satisfies the above conditions, and $\sigma > \frac{\kappa}{2}$. Then the probability measure

$$P_N(A) = \frac{1}{N+1} \# (0 \leqslant m \leqslant N : \varphi(\sigma + imh, F) \in A), \quad A \in \mathcal{B}(\mathbb{C}),$$

converges weakly to the distribution of the random variable $\varphi(\sigma, \omega_h, F)$ as $N \to \infty$.

First the condition on the number h is used in a limit theorem for Dirichlet polynomial. Let

$$p_n(t) = \sum_{m=1}^{\infty} \frac{c(m)}{m^{\sigma + it}}, \quad n > \max(m_0, n_0).$$

Denote by p_1, \ldots, p_r distinct prime numbers which divide n!. Let

$$\Omega_r = \prod_{j=1}^r \gamma_{p_j},$$

where $\gamma_{p_j} = \gamma$ for j = 1, ..., r, and

$$\Omega_{hr} = \{ \omega \in \Omega_r : \, \omega(m_0) = \omega(n_0) \}.$$

Consider on $(\Omega_r, \mathcal{B}(\Omega_r))$ a probability measure

$$Q_{hN}(A) = \frac{1}{N+1} \# (0 \leqslant m \leqslant N: (p_1^{imh}, \dots, p_r^{imh}) \in A).$$

LEMMA 1. The probability measure Q_{hN} converges to the Haar measure m_{hr} on $(\Omega_{hr}, \mathcal{B}(\Omega_{hr}))$.

Proof. Consider the Fourier transform

$$g_N(k_1,\ldots,k_r) = \int_{\Omega} x_1^{k_1} \ldots x_r^{k_r} dQ_{hN},$$

 $(k_1,\ldots,k_r)\in\mathbb{Z}^r$, $(x_1,\ldots,x_r)\in\Omega_r$, of the measure Q_{hN} . Without loss of generality we can suppose that the prime numbers p_1,\ldots,p_l occur in the factorization of m_0 and n_0 , and let α_i be the exponent of p_i in $\frac{m_0}{n_0}$, $i=1,\ldots,l$. Then we have that

$$g_{N}(k_{1},...,k_{r}) = \frac{1}{N+1} \sum_{m=0}^{\infty} \prod_{j=1}^{r} p_{j}^{imhk_{j}} = \frac{1}{N+1} \sum_{m=0}^{N} \exp\{imh \sum_{j=1}^{r} k_{j} \log p_{j}\}$$

$$= \begin{cases} 1, & \text{if } k_{1} = k\alpha_{1}, ..., k_{l} = k\alpha_{l}, k_{l+1} = ... = k_{r} = 0, \\ \frac{1}{N+1} \frac{1 - \exp\{i(N+1)h \sum_{j=1}^{r} k_{j} \log p_{j}\}}{1 - \exp\{ih \sum_{j=1}^{r} k_{j} \log p_{j}\}} & \text{otherwise.} \end{cases}$$
(1)

Since the logarithms of prime numbers are linearly independent over the field of rational numbers,

$$\sum_{j=1}^{r} k_j \log p_j \neq 0 \quad \text{for } (k_1, \dots, k_r) \neq (0, \dots, 0).$$

By the definition of k_0

$$\exp\left\{\frac{2\pi k_0}{h}\right\} = \frac{m_0}{n_0} = p_1^{\alpha_1} \dots p_l^{\alpha_l},$$

therefore the rational numbers

 $p_1^{k_1} \dots p_r^{k_r}$ and $\exp\left\{\frac{2\pi k}{h}\right\}$ coincide if and only if $(k_1, \dots, k_r) = (m\alpha_1, \dots, m\alpha_l, 0, \dots, 0)$. Hence

$$\sum_{j=1}^{r} k_j \log p_j \neq \frac{2\pi k}{h} \quad \text{for any } k \in \mathbb{Z},$$

for $(k_1, \ldots, k_l, k_{l+1}, \ldots, k_r) \neq (m\alpha_1, \ldots, m\alpha_l, 0, \ldots, 0)$. Consequently, (1) shows that

$$\lim_{\substack{N\to\infty\\N\to\infty}} g_N(k_1,\ldots,k_r) = \begin{cases} 1, & \text{if } (k_1,\ldots,k_l,k_{l+1},\ldots,k_r) = (k\alpha_1,\ldots,k\alpha_l,0,\ldots,0), \\ 0 & \text{otherwise.} \end{cases}$$
Hence the lemma follows.

Let $g \in \Omega_h$ and

$$p_n(t,g) = \sum_{m=1}^n \frac{c(m)g(m)}{m^{\sigma+it}}.$$

LEMMA 2. The probability measures

$$\frac{1}{N+1}\#(0\leqslant m\leqslant N\colon p_n(mh)\in A),\quad A\in\mathcal{B}(\mathbb{C}),$$

and

$$\frac{1}{N+1}\#\big(0\leqslant m\leqslant N\colon p_n(mh,g)\in A\big),\quad A\in\mathcal{B}(\mathbb{C}),$$
 both converge weakly to the same measure as $N\to\infty$.

Proof. We use Lemma 1 and the same method as in [1]. Now we define, for $\sigma_1 > \frac{1}{2}$,

$$\varphi_n(s, F) = \sum_{m=1}^{\infty} \frac{c(m)}{m^s} \exp\left\{-\left(\frac{m}{n}\right)^{\sigma_1}\right\}.$$

and

$$\varphi_n(s,\omega_h,F) = \sum_{m=1}^{\infty} \frac{c(m)\omega_h(m)}{m^s} \exp\left\{-\left(\frac{m}{n}\right)^{\sigma_1}\right\}.$$

It is not difficult to see that the later two series converge absolutely for $\sigma > \kappa/2$.

LEMMA 3. Suppose that $\sigma > \frac{\kappa}{2}$. Then there exists a probability measure P_n on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ such that both the measures

$$\frac{1}{N+1}\#\big(0\leqslant m\leqslant N\colon \varphi(\sigma+imh;F)\in A\big),\quad A\in\mathcal{B}(\mathbb{C}),$$

and

$$\frac{1}{N+1}\#\big(0\leqslant m\leqslant N\colon \varphi(\sigma+imh,\omega_h;F)\in A\big),\quad A\in\mathcal{B}(\mathbb{C}),$$

converge weakly to P_n as $N \to \infty$.

Proof. The proof of the lemma uses Lemma 3 and is similar to that of Lemma 3.1 of [1].

Now we give a result of the ergodic theory. Let $a_h = \{p^{-ih}: p \text{ is prime}\}$. We define a transformation f_h on Ω_h by $f_h(\omega_h) = a_h \omega_h$, $\omega_h \in \Omega_h$. Then f_h is a measurable measure preserving transformation on $(\Omega_h, \mathcal{B}(\Omega_h), m_{hH})$.

LEMMA 4. The transformation f_h is ergodic.

Proof. The proof with minor changes coincides with that of Lemma 5.1 of [1]. Using Lemma 4 and the classical Birkhoff theorem, we obtain that, for $\sigma > \frac{\kappa}{2}$,

$$\sum_{m=0}^{N} |\varphi(\sigma + imh, \omega_h; F|^2 = O(N), \quad N \to \infty,$$

for almost all $\omega_h \in \Omega_h$. The estimate

$$\sum_{m=0}^{N} |\varphi(\sigma + imh; F)|^2 = O(N), \quad N \to \infty,$$

for $\sigma > \frac{\kappa}{2}$ follows from the estimate [3]

$$\int_0^T |\varphi(\sigma + it; F)|^2 = O(T), \quad T \to \infty.$$

The last two mean-value estimates allow us to obtain the following statement.

LEMMA 5. Let $\sigma > \frac{\kappa}{2}$. Then

$$\lim_{n\to\infty} \limsup_{N\to\infty} \frac{1}{N+1} \sum_{m=0}^{N} \left| \varphi(\sigma+imh;F) - \varphi_n(\sigma+imh;F) \right| = 0$$

and

$$\lim_{n\to\infty} \limsup_{N\to\infty} \frac{1}{N+1} \sum_{m=0}^{N} \left| \varphi(\sigma + imh, \omega_h; F) - \varphi_n(\sigma + imh, \omega_h; F) \right| = 0$$

for almost all $\omega_h \in \Omega_h$.

Proof of Theorem 1. First, using Lemmas 3 and 5, by traditional way we show that there exists a probability measure P on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ such that the probability measures P_N and

$$\frac{1}{N+1} \# (0 \leqslant m \leqslant N \colon \varphi(\sigma + imh, \omega_h; F) \in A), \quad A \in \mathcal{B}(\mathbb{C}),$$

both converge weakly to P as $N \to \infty$. It remains to check that P is the distribution of the random variable $\varphi(\sigma, \omega_h; F)$.

Let $A \in \mathcal{B}(\mathbb{C})$ be a continuity set of the measure P. Then by the above remark, for $\omega_h \in \Omega_h$,

$$\lim_{N \to \infty} \frac{1}{N+1} \# \left(0 \leqslant m \leqslant N \colon \varphi(\sigma + imh, \omega_h; F) \in A \right) = P(A). \tag{2}$$

Now we fix the set A and define the random variable η on $(\Omega_h, \mathcal{B}(\Omega_h), m_{hH})$ by the formula

$$\eta(\omega_h) = \begin{cases} 1, & \text{if } \varphi(\sigma, \omega_h; F) \in A, \\ 0, & \text{if } \varphi(\sigma, \omega_h; F) \notin A. \end{cases}$$

Then

$$E\eta = \int_{\Omega_h} \eta \, dm_{hH} = m_{hH} \big(\omega_h \in \Omega_h : \, \varphi(\sigma, \omega_h; F) \big)$$
 (3)

is the distribution of the random variable $\varphi(\sigma, \omega_h; F)$. However, by Lemma 4 and the Birkhoff theorem

$$\lim_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} \eta \left(f_h^m(\omega_h) \right) = E \eta \tag{4}$$

for almost all $\omega_h \in \Omega_h$. On the other hand, the definition of η and f_h shows that

$$\frac{1}{N+1}\sum_{m=0}^{N}\eta(f_{h}^{m}(\omega_{h}))=\frac{1}{N+1}\#(0\leqslant m\leqslant N:\varphi(\sigma+imh,\omega_{h};F)\in A).$$

This together with (3) and (4) yields

$$\lim_{N\to\infty} \frac{1}{N+1} \# (0 \leqslant m \leqslant N \colon \varphi(\sigma + imh, \omega_h; F) \in A) = P_{\varphi}(A)$$

for almost all $\omega_h \in \Omega_h$, where P_{φ} is the distribution of the random element $\varphi(\sigma, \omega_h; F)$. Hence and from (2) we have that

$$P(A) = P_{\varphi}(A)$$

for all continuity sets A of the measure P. From this, clearly, the theorem follows.

References

- 1. R. Kačinskaitė, A discrete limit theorem for the Matsumoto zeta-function on the complex plane, *Liet. matem. rink.*, **40**(4), 475–492 (2000) (in Russian).
- 2. A. Laurinčikas, The definition of one complex-valued random variable (this volume).
- 3. K. Matsumoto, A probabilistic study on the value-distribution of Dirichlet series attached to certain cusp forms, *Nagoya Math. J.*, **116**, 123–138 (1989).

REZIUMĖ

A. Laurinčikas. Apie parabolinių formų dzeta funkcijas

Įrodoma diskreti ribinė teorema kompleksinėje plokštumoje parabolinių formų dzeta funkcijoms, kai progresijos žingsnis h turi savybę: $\exp\{\frac{2\pi k}{h}\}$ yra racionalus kuriems nors $k \neq 0$.