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1. Introduction

Denote by N, R and C the sets of all positive integers, of all real numbers, and all
complex numbers, respectively. Let s = o + it be a complex variable, {A,: m € N}
be an increasing sequence of positive numbers such that lim,,_, o0 A;, = +00, and let
{am: m € N} be a sequence of complex numbers. The series

(e.¢]
Y ame™Hn )
m=1

is called a general Dirichlet series with coefficients a,, and exponents A,,. If A,, =
log m, then we have the ordinary Dirichlet series.

Suppose that series (1) absolutely converges for o > o, and has a sum f(s). In the
majority of classical cases the function f(s) is analytically or meromorphically con-
tinuable to the whole complex plane. In [4] we began the investigation of the discrete
value-distribution of series (1) by probabilistic methods and we proved for it limit the-
orems in the sense of the weak convergence of probability measures on the complex
plane. Discrete limit theorems for f (s) in the space of analytic functions were obtained
in [6].

Let, for positive integer N,

1
un(...) = N+1#{0<m<N. S
where in place of dots a condition satisfied by m is to be written. Denote by B(S) the
class of Borel sets of the space S.

The aim of this paper is to obtain a discrete limit theorem for the function f(s) on
the left of the line o = o,. Suppose that the function f(s) is meromorphically con-
tinuable to the region o > o with some 07 < 0y, all poles in this region are included
in a compact set. Denote by B a number (not always the same) bounded by a constant.
Moreover, we assume that, for o > o7, the estimates

f)=Blt|*, |t| =10, @ >0, 2
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where 1y is a fixed positive number, and

T
/O |f(o +in[*dr =BT, T — oo, 3)

are satisfied.
Let Coo = C U {00} be the Riemann sphere, and let d(s1, s2) be a metric given by
the formulae

2|s1 — 82| 2
VI+ 1P+ 1522 V1i+1sP?

where s, 51, 52 € C. This metric is compatible with the topology of Coo. Let D = {s €
C: o > 01}. Denote by M (D) the space of meromorphic on D functions g: D —
(Cwo, d) equipped with the topology of uniform convergence on compacta. In this
topology, a sequence {g,: g, € M (D)} converges to the function g € M (D) if

d(sy,82) =

d(s,00) = d(00,00) =0,

d(gn(s),8(s)) >0, n— oo,

uniformly on compact subsets of C. Consider the weak convergence of the probability
measure

Pn(A) = pun(f(s+imh) € A), AeBM(D)).

Then we have the following statement.

THEOREM. Suppose that the function f(s) satisfies conditions (2) and (3). Then
there exists a probability measure P on (M(D), B(M(D))) such that the measure Py
converges weakly to P as N — oo.

2. Auxiliary results

Denote by sy, ...,s, all poles of the function f(s) lying in the half-plane o > o7.
Since all poles are included in compact set, we have that the number r is finite. Let
r
fl(s) — l-_[ (1 _ ekl(sj—»"))'
Jj=1
Then, clearly, fi(s) is a Dirichlet polynomial, and fj (sj)=0for j=1,...,r. We
can write fi(s) = :n=1 bme~*1™S | Therefore, by Theorem 2 of [5] there exists a
probability measure P’ on (H (D), B(H (D))) such that the measure
Py, 5 (A) =pun(fi(s +imh) € A), AeB(H(D)),

converges weakly to P’ as N — oo.
Moreover, let f(s) = fi(s) f(s). Then we have, that the function f,(s) is regular
on D, and for o > o,, we have

r 0 r oo
AE=TTA=e") 3 g =3 3" g, e~ Cntiis
Jj=1 m=1 A

Jj=0m=1
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with some coefficients a,,; satisfying a,,; = Bla,,| form € Nand j=0,1,...,7.On
account of (2) and (3), we have, for o > o1,
fa(s)=Blt|*, |t| =10, @ >0, 4)
and T
/ |20 +in|*dr = BT, T — oc. (5)
0

Thus, now we have a similar but more general situation as in [4] and [6], and applying
a similar method, we can prove the following lemma.

LEMMA 1. There exists a probability measure P on (H(D), B(H (D))) such that
the probability measure

Pn,;,(A) =un(fa(s +imh) € A), AeB(H(D)),

converges weakly to P” as N — oo.

We begin with a limit theorem for the Dirichlet polynomial

r n
DPn (S) — Z Z amje_()xm"'j)»])s' (6)

Jj=0m=1

LEMMA 2. There exists a probability measure P, on (H(D), B(H(D))) such that
the probability measure

Py, p,(A) = un(pa(s +imh) € A), A eB(H(D)),
converges weakly to P,, as N — o0.

Proof. The lemma is obtained in the same way as Theorem 2 in [4].

Now we will approximate the function f;(s) by absolutely convergent Dirichlet
series in the mean. Let 0o = 0, — 1. For o € [—03, 03] define

I,(s) = ir(i)e(/\nﬂ'ms.
o2 (¢p)
Clearly, 02 > 0. For 0 > o7 we consider the function

op+i0c0

I d
gn(s) = — Fals + 2, (z)?z.

2mi 03—i00
LEMMA 3. The function g, (s) has the expansion

r o0
gn() =Y amjexp{ —e Cn=inoz)e=Gntiis,

j=0m=1
the series being absolutely convergent for o > o07.

Proof. The lemma is obtained in the same way as Lemma 8 in [3].
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LEMMA 4. Let K be a compact subset of D. Then

N
lim limsupN Zsup|f2(s+imh)—gn(s +imh)| =0.
K

n—=>00 N_o00 +1 me0°€

Proof of this lemma is similar to that of Lemma 6 in [4].
Lemma 3 shows that g, (s) is an analytic function on D. Let

Py n(A) = un(gn(s +imh) € A), A eB(H(D)).
To investigate the weak convergence of these measures we need a metric on H (D)
which induces its topology. It is known , see, for example, Lemma 1.7.1 of [2], that
there exists a sequence {K,} of compact subsets of D such that D = Ug‘_’__lK,,, K, C
K, +1,and if K is a compact subset of D, then K € K, for some n. Then

o(f. )= on(f, 8)

—_— , H (D),
LTio g T8EHD

where

on(f,8) = sup | f(s) — g(s)|

sekK,

is a metric on H (D) which induces its topology.

LEMMA 5. There exists a probability measure P, on (H(D), B(H (D))) such that
the measure Py , converges weakly to P, as N — o0.

Proof. The lemma is obtained in the same way as Lemma 10 in [3].

Proof of Lemma 1. We will use the same reasoning as in the proof of Lemma 5. Tak-
ing into account Lemma 4, by the Chebyshev inequality we find that for every £ > 0

lim limsupun (o(f2(s +imh), g, (s +imh)) > ¢)
n—=00 N_s00

N
< lim limsup—(—}\—]-q_l——ﬁg Z o(fa(s +imh), g, (s +imh)) =0. @)

nh—00 N—00 0

Let Oy be a random variable defined on a certain probability space (2o, B(), P)
with values mh and distribution P(Oy = mh) = ﬁlﬁ, m=0,1,...,N. Define

- XNn(s)=gn(s +i0y) and Yn(s)= fa(s +iON).
Then we can write relation (7) in the form

lim limsupP(e(Yn(s), Xn,n(s)) =€) =0. (8)
n—=00 N_s00

D o
Denote by — the convergence in distribution. From Lemma 5 we have

D
XN,n > Xny (9)
o0
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where X, is an H (D)-valued random element with distribution P,. Using relation (9),
similarly to the proof of Lemma 5 we obtain that the family of probability measures
{P,} is tight, hence it is relatively compact. From this the existence of a subsequence
{Py,} C {P,} which weakly converges to some measure P as nj — oo follows. Since
P, is the distribution of the random element X,,, we have that

Xp, 2> P (10)

np—o00
Now Theorem 4.2 of [1] together with (8), (9) and (10) imply

D
YN P//,
N—>o00

i.e., Py, s, converges weakly to P” as N — oo.
Define H2(D) = H(D) x H(D), and let

Py 5. 1, (A) = un((fi(s +imh), fr(s +imh)) € A), A€ B(H*(D)).

We have limit theorems for the functions fi(s) and f,(s) in the space H (D). Now we
will prove a joint discrete limit lemma for these functions.

LEMMA 6. There exists a probability measure Pon (H*(D), B(H 2(D))) such that
the measure Py g, r, converges weakly to P as N — 00.

For the proof of this lemma we need the following results. Let p,(s) is defined in

(6).

LEMMA 7. There exists a probability measure i;fl»Pn on (H*(D), B(H*(D))) such
that the probability measure

PN, fy.pn (A) = un ((f1(s + imh), pa(s +imh)) € A), A € B(H*(D)).

converges weakly to Py, . as N — oo.

Proof. Let y denote the unit circle on C, i.e., ¥ = {s € C: |s| =1}, and let

n
Q= 1—[ Vm,
m=1

where y,, = y for all m € N. Define the function v: Q, - H 2(D) by the formula

r r n
V(X], ey Xy) = ( Z bme—hmsxl—m’ Z Z amje—(km-%j}q)sxl—jx';l)’
m=0

j=0m=1

(x1y..-,%n) € Q,.
Now we can prove that the probability measure

pn(E™mh L etnmhy e A), A e B(Q)
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converges weakly to the some measure P. Proof of this proposition is similar to that
of Lemma 1 in [5], only the limit measure P is not necessarily the Haar measure.
By the definition of the function v(xy, ..., x,), we have

v(eMmh, L eremhy = (fi(s +imh), pa(s +imh)).

The function v is continuous. Therefore, from this and in view of Theorem 5.1 from
[1], we obtain that the measure Py, ,, converges weakly to the measure Py, , =
Pv~!. The lemma is proved.

LEMMA 8. On (H2(D),B(H2(D))) there exists a probability measure i’;, such
that the measure

PN, f1.6.(A) = un ((fi(s +imh), g (s +imh)) € A), A e B(H*(D)),

weakly converges to P, as N — oo.

Proof of the lemma uses Lemma 7 and is similar to that of Lemma 5.

Proof of Lemma 6 follows in the same way from Lemma 8 as Lemma 1 follows
from Lemma S.

3. Proof of the Theorem
Define the function u: H2(D) — M (D) by the formula

82
u(gi, g2) = P 81,82 € H(D).

The metric d satisfies the equality

1 1
d(gi, 82) =d(—, —)-
g1 82
Therefore, the function u is continuous. Hence, by Theorem 5.1 from [1] and
Lemma 6, we obtain that the measure Py, r,u~! converges weakly to Pu~! as
N — 00, i.e., the measure

fo(s +imh)

Pn(A) = pn(f(s +imh) € A) = IJ«N(m

c A), A e B(M(D)),

converges weakly to P = Pu~'as N — co. The theorem is proved.
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REZIUME

R. Macaitiené. Diskreti ribiné teorema bendrosioms Dirichlet eilutéms meromorfiniy funkcijy erdvéje

Irodyta diskreti ribiné teorema bendrosioms Dirichlet eilutéms tikimybiniy maty silpnojo konvergavimo
prasme meromorfiniy funkcijy erdvéje.
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