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Harmonic Bernoulli strings and random permutations
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Abstract. We examine fairly special b-harmonic Bernoulli strings appearing in n observations. It is shown
that their count number can be used to define a random process converging to the Brownian motion as n
tends to infinity. The proof is based upon the invariance principle for random permutations.

Keywords: Bernoulli string, invariance principle, Brownian motion, symmetric group.

This remark is stimulated by the recent paper [7] and preprint [9], where connec-
tions between Bernoulli strings and random permutations are discussed. These works
also contain the historical background and motivation. Proving the invariance princi-
ple, we now demonstrate that the results obtained for random permutations can imply
their analogs for the strings.

Let us observe the sequence X, X,, ... of independent Bernoulli random variables
with p; =P(X;=1)=1-P(X; =0) >0, i > 1. Let the variable Z; count the
number of occurrences of the j-string (1,0,...,0, 1) containing j — 1 consecutlve
zeros, j = 1. Sometimes (see, for instance [1]) such strings are called j-spacings of
the sequence X1, X7, .... The indicator of the j-string, which started at time i, equals

Yij=Xi(1 = Xiy) ... (0 = Xipj—1)Xiyj
and
Zj=) Yy, j>1
i>1

To assure Z; < oo with probability one, it is necessary and sufficient to assume the
condition

> b ﬂ(l ~ Pitk)Pitj < 0. (1)

i1 k=1

In [7] and [9], a great attention is paid to the distribution of Z; it {X;}isthe b- harmonic
Bernoulli sequence defined via p; = 1/(i + b), b > 0. The main result of [9] gives the
expression of the factorial moments. For 1nstance ifb>0andu® :=u(u—1)...(u—
s + 1), then

1) N L 1 —vins
E(z" ...ZNN)zbf b= H( . ) dv,
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where s1,...,5y € N. If b =0, then we have [2]

N .
E(Z§SI) o Z](\-;’N)) _ l—I (%)J
j=1

An interesting Bernoulli sequence satisfying (1) and closely connected with the
theory of random permutations is given by p; =6/(0 +i — 1), where 6 > 0, i > 1.
This connection will be seen from the Feller Coupling Lemma below. By the random
permutation we understand a permutation o taken from the symmetric group Sy with
the Ewens probability

P{o}) =6¥ /0@ +1)...(06 + N — 1) =:6") /6y, (2)

where w(o) denotes the number of independent cycles in the decomposition of o. Let
k(o) be the number of cycles of length j in it. Then w(o) = kj(o) + --- + kn(0)

and k(o) := (k1 (0), ..., kn(0)) is called the cycle structure vector. Its distribution is
given (see [1] or [2]) by
P(k kiy.. kn)) =1{1k; +--- Nk NN!NQI”1
(k(o) = ki, ..., kn)) =1{lk; + - Nky = }"9’('1\7)". 1 (7) kil

J=1
Note that the relation 1ky(0) + - -- + Nky (o) = N implies dependence of the random
variables kj(0), L < j < N. “ W

LEMMA 1 (Feller’s Coupling). Let N € N and 0 > 0 be arbitrary. There exists a
probability space on which the Bernoulli sequence {X;} with p; =0/(0+i—1),1 > 1
is defined together with a random permutation o so that (2) holds and

N—j
kj(o) = Z Yij + Xn—j+1(1 = XN—j42) ... (1 — XN).

1=1

For a proof and applications of these relations, we refer to [1] and [2].

In the papers [3]-[6], [8], and others general functional limit theorems in the space
ID[O, 1] for the partial sum processes

Y hjnkjo)) —an(®)

JSyn(@)

were proved. Here hjy (k) is a real valued array, j <N, N e N,k >0, yn: [0, 1] >
{1,..., N} is an appropriate nondecreasing mapping, yn(0) =0, yn(1) = N, and
an(2) is a centralizing function on [0, 1]. By the lemma above these results can be
interpreted in terms of the Bernoulli string counts if p; =0/(6 +i — 1). In this remark
we show this possibility for the b-harmonic strings provided that b € N.
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In what follows we take p; = 1/( +b),i > 1,and b € Z+. Let an_Ylj—l— .

Yo—j j, 1 < j <n bethe number of j-strings in the sequence X, ..., X,,. Set
1
W, () = ( E Uj, — tlogn) tel0,1], n>=2
,logn j<nt

In what follows in the asymptotic relations we take n — oo.

THEOREM. The process W, weakly converges in the space D[0, 1] to the standard
Brownian motion.

We will deduce the assertion from the following proposition.

LEMMA 2. The process

{ |
H,(t) = ( ki(o) —tlog(n —I—b)), tel0,1], n>2
Viog(n +b) j<§+h) ’

under the measure (2) with arbitrary fixed 0 > 0, weakly converges in the space D[0, 1]
to the standard Brownian motion.

This s a corollary of a result by J.C. Hansen [6]. See [3]-[5] for further generaliza-
tions.

Proof of Theorem. We apply Lemmas 1 and 2 for § = 1 taking also N =n + b.
They also allow us to assume that the processes H,, and W,, are defined on a common
probability space. So, it suffices to prove that

Pa(e):= P( sup |Ha(t) = Wo(0)] > ¢) = o(1)
0<<1

foreach ¢ > 0.
Since b € Z*, the variable U; jn actually counts the j-strings in the sequence

Xb+1, .. Xb+,,, where Xb+, = X;,i > 1. If further

H l+k l+j9 l>1a

then
n+b—j

n—j
=D Vorij, k@)= Y P+ ¥, i
i=1 i=1 :

where Y,;+b —jt1,j = Xngb—j+1(1 — Xptb— j+2) - (1= Xntb). Hence

Aj:=ki(o) — ,n_ZY,,+Y’+,, .y 3
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and

kj(“)"’ E an
Jlogn i<tonb) Jlogn :

J<in

P,(e) < P( sup

0<r<1

L) )
P(ZAj>(e/4)\/logn>+P( sup > kj(or)>(8/4)\/logn)

j<n 0<t<1tn<j<t(n+b)
+ P( Z ki(o) 2 (8/4)n\/10gn) + o(1). (4)
J<n+b
Since
A 1 1
EY;: = : EY’ :
P+ - DG+ ) PO T g b
by (3) we have
1 n 1
EY A= ( _)+ <b +1=001
JZ; ;; l—l—]—-l 1+J n+b Zj(b J) -

Thus, by virtue of Markov’s inequality, the first probability on the right hand side of
(4) 1s o(1). Since

n+b—j .
1 1 1 n+b—j 1
Ek;(0) = ( . .)+ =Z + 5
i(@) Z; I+j7—1 i+ n—+b j(n+b) n+b (%)
and
1 n+b—
j<n+b j<n+b J

we again obtain the estimate o(1) for the last probability in (4).
By (5), the probability on the right hand of (4) containing the supremum over ¢ does
not exceed

P( max Z ki(o) 2 %Jlogn)

0<k<
SIS < j<kbk/n

+ P( max Z ki(o) > %N/logn)

0<k<n+b
<ESmr kn/(n+b)<j<k

n+b
SW(T Y Ekj(0)+ Y Y Ek (a))

k=0 k<j <k+b k=0 k—b<j <k

A, 5, 1)

kb k—b<j<k+b’
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[ 1 1 1
:O<¢T@7];<2(k+b) T 36 —b) —I—O<p>>> + o(1) = o(l).

Gathering all estimates of the probabilities in (4), we have P,(g) = o(1) foreach ¢ > 0.
Theorem is proved.

Concluding Remark. The assertion of Theorem can be extended for the Bernoulli
sequences X1, X3, ... with

0
O+i—1+b’

pi=P(Xi=1)=

WV

where 8 > Q0 and b € Z7 are fixed. Nevertheless, the case 8 < 1 is much more involved.
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REZIUME

E. Manstavicius. Harmoninés Bernulio voros ir atsitiktiniai keitiniai

Nagrinéjamos atsitiktinés specialaus pavidalo nuliy ir vienety voros, gautos generuojant nepriklausomus
Bernulio atsitiktinius dydzZius, kuriy sékmiy tikimybés sudaro b-harmoning seka. Panaudojus tam tikros
struktiiros vory, pasirodZiusiy tarp pirmyjy »n reik¥miy, indikatorius, apibréZiamas procesas ir irodomas jo
konvergavimas ID[0, 1] erdvéje. [rodyme pritaikomas atsitiktiniy keitiniy invariantiSkumo principas.



