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Factoring with Pell conics
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Abstract. In the paper the Pell conics method for factoring integers, based on observations of Lemmer-
meyer [2, 3], is presented explicitly. Moreover, a similar algorithm for factoring polynomials over finite
fields is given.
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1. Introduction

Factoring integers is a difficult task. Many cryptosystems in practise rely on the lack of
having a fast (polynomial time) algorithm for factoring a given large integer. One of the
most important (subexponential) algorithms is the elliptic curve factoring method of
Lenstra [4]. In this brief note we present its relative for conics. The idea for such a fac-
toring algorithm was proposed by Lemmermeyer [2,3]. Observing analogies between
elliptic curves and conics, Lemmermeyer obtained (among other interesting similari-
ties) a primality test based on Pell conics in the spirit of Lucas’ classical test; in par-
ticular, a special choice of the underlying conic gives the well-known Lucas-Lehmer
test for Mersenne numbers. Further, Lemmermeyer remarked the possibility to replace
elliptic curves by conics in Lenstra’s factoring algorithm; in [2] he gave an analo-
gous algorithm in the related case of circles but he did not work out the details for
Pell conics. It is the aim of this brief note to give such a factoring method explicitly.
Furthermore, we treat the related problem of factoring polynomials over finite fields.
Our approach cannot compete with well-known methods but might be interesting with
regard to its simplicity.

2. Pell conics

Let d # 1 be a squarefree integer and put

A_|d if d=1mod 4,
~14d if d=2,3 mod 4.

The affine curve of genus zero defined by the equation
X2~ AY* =4 (1)

is called Pell conic, and we shall denote it by C(R) according to the ring R over which
(1) 1s studied. Pell conics are irreducible, non-singular curves with a distinguished in-
tegral point (2, 0). The quadratic diophantine equation (1) is a type of Pell equation
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(after the English mathematician Pell who had nothing to do with it) and has been stud-
ied for more than two millenia; another form will be given below. Its set of solutions

forms the group of units pk in the quadratic number field K = Q(+/A) with norm one.
In fact, the mapping

CZ) > (x,y) — -;—(x+y~/c—l) € UK

provides a group homomorphism.

If the underlying ring R is a field F, one can define a group law for the Pell conic
C(F) as follows. Given two rational points Py, P, € C(F), take the line through (2, 0)
parallel to the line passing through Py and P,. This line has a second point of inter-
section with the conic C(F) which we denote by P; + P,. It is not too difficult to
verify that this addition makes C(F’) to an additive group with neutral element (2, 0).
Moreover, one can compute explicitly the coordinates of the sum of two points by the
formula

1
(x1,y1) + (x2,y2) = z(xlxz + yviy2 A, x1y2 + x2)1). (2)

If F =F, is a finite field with ¢ = p? elements, then

AN d
ClF,)=2Z/mZ, where m=q — (;) : | (3)

and (-I;) denotes the Legendre symbol modulo p.
For more details we refer to [1] and [3].

3. Factoring integers

We want to find the factorization of a given composite integer N. The ring Z/NZ is
not a field, nevertheless, we shall consider Pell conics over Z/NZ. Since Z/NZ is not
a field, the conic C(Z/NZ) splits into a proper product of residue class rings (different
to (3)), each of these factors having order less than the group order. Now suppose that
we know a point P on C(Z/NZ) different from the neutral element (2, 0). Further,
assume that we already know a prime divisor p of N. Since the order of any element
in C(Z/ pZ) divides the group order

c:=4C(Z/pZ)=p - (-ﬁ—)

of C(Z/ pZ), we have ¢P = (x, y) with
| x=2 and y=0 mod p.

Thus, if N does not divide y, we may find a non-trivial divisor of N by computing
ged(x — 2, N) and gcd(y, N). This observation leads to a factoring algorithm. For this
aim we notice that we can also work with any multiple of c. If ¢ splits into small prime
divisors £, it is quite easy to find such a multiple. An integer is called B-smooth if all
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of its prime divisors are less than or equal to B. If the group order ¢ is B-smooth, the
chances are good that B! is a multiple of c.

We sum up all these observations in the following algorithm for factoring a given
integer N.

f

1. Check with a standard primality test whether N is a prime power or not. If N is a
prime power p/, then RETURN p.

2. Choose a positive squarefree integer d and a point P # (2, 0) on the associated
Pell conic C given by

X% _ AY? =4 mod N.
3. Choose a positive integer B and compute (B!)P = (x, y) on C.

4. If N does not divide y RETURN gcd(x — 2, N) and gcd(y, N), otherwise in-
crease B or choose a new random conic C with a point P and go back to Step 3.

From an algorithmical point of view it is reasonable to run this method parallel
with several Pell conics. The multiplication (B!)P is performed by the standard use of
fast exponentiation, that is representing B! dyadically and adding the associated points
2KP. Suitable points on a Pell conic can be found allong the lines of the solution of
the associated Pell equation,

X*—dy?=1, (4)

by the continued fraction expansion of +/A.

~ We illustrate this method now with a very simple example, say N = 35. We know
from the theory of the Pell equation that (2, 1) is a solution of (4) for d = 3. This gives
us the point P = (4, 1) on the Pell conic C(Z/35Z) with A = 12. We may choose
B = 3 and compute by (2)

2(4,1) = (14,4) and 4(4,1) =2(14,4) = (10, 28).
This leads to
GBGHP=24,1)+44,1) = (14,4) + (10,28) = (7, 6),

which yields the factor 5 =7 — 2 of N = 35. Thus we arrive at N =35 =15 - 7. Note
that §C(Z/5Z) = 6 =2 - 3 (by (3) which corresponds to our choice of B = 3).

Recall Pollard’s p — 1 method. By Fermat’s little theorem we know that 2P~ ! =
1 mod p for any odd prime p. If p — 1 divides b, then 2° = 1 mod p.Soif pisa
prime factor of N, then p divides gcd(2® — 1, N). Pollard’s method relies on the idea
of factoring N by taking b having many divisors of the form p — 1. This is also the
basis for Lenstra’s celebrated elliptic curve factoring method [4]. However, compared
with classical methods that worked with the multiplicative group modulo N, the use
of elliptic curves has the advantage that there are lots of elliptic curves modulo a given
number N. The same holds for Pell conics too. For further reading we refer to [5].
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4. Factoring polynomials over finite fields

The same idea can be applied for factoring polynomials over finite fields. We restrict
our investigations to the case of finite fields of the formF), := Z/pZ, where p is prime.
If P is an irreducible polynomial, then

F,[X1/P(X) = {F(X)+ P(X)F,[X]: F €F,[X]}

is a finite field of order p?¢, where d is the degree of P, and so it is isomorphic to

F . Thus it makes sense to study Pell conics defined over such fields. They still obey

a group law, and the order of this group is given by (3). We only have to take into
account that the points on such conics have polynomial coordinates.

Now let Q € F,[X] be a reducible polynomial with irreducible divisor P of degree
d. Suppose again that we know a point P on C(F,[X]/Q (X)) different from the neu-

tral element (2, 0). By the same reasoning as in the previous section the order of any
element in C(F,[X]/ P (X)) divides the group order

A d
¢ = HC(F,[X1/ P (X)) = p — (-;) ,

and so we get cP = (x, y) with
x=2 and y=0 mod p.

Thus, if Q does not divide y, we get a non-trivial divisor of O by computing gcd(x —
2, Q) and gcd(y, Q). The corresponding algorithm is

1. Check with a standard primality test whether Q is a irreducible or not. If Q is a
power P/ of a reducible polynomial P, RETURN P.

2. Choose a positive squarefree integer d and a point P # (2, 0) on the associated
Pell conic C given by

X2 - AY?* =4 mod Q.
3. Choose a positive integer B and compute (BHYP = (x,y) onC.

4. If QO does not divide y RETURN gcd(x — 2, Q) and gcd(y, Q), otherwise in-
crease B or choose a new random conic C with a point P and go back to Step 3.

We illustrate the algorithm by giving an example. We want to factor the polynomial
O(X) = X3 + X + 3 over F7. We start with the point

P=(X?>+3,6X+1)

on the conic defined by (1) with A =5 over F7[X]/Q(X); note that we may reduce
modulo Q, i.e., X> = 6X + 4. We compute

2P =(5X*+4X,X*>+5X +6)
and find
ged(5X* +4X +5,0(X)) =X +2,
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which yields the desired factorization of Q in F7[X]:

O0X)=X+2D(X*+5X +5).
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REZIUME

R. Slezevi¢iené. Faktorizavimas naudojant Pelio konikes

Straipsnyje iSplétojamos Lemmermeyer’io idé€jos [2, 3] ir apraSomas sveikyjy skaiciy faktorizavimo meto-
das naudojant Pelio konikes. Be to, pateikiamas pana$us algoritmas polinomams vir§ baigtiniy ktiny fak-
torizuoti.



